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covering the force density method, thrust network analysis, dynamic relaxation and particle-spring systems.
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construction methods.
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FOREWORD

On architects and engineers
Jörg Schlaich

There is still a widespread misunderstanding concerning 

the role of architects and structural engineers: it is 

said that architects are the designers of a building 

from concept to detail, whereas the engineers (only) 

care for its stability. In fact, it is its function which 

clearly attributes a building to either an architect or 

an engineer only, or to both: to an architect only if 

it is multifunctional in a social context – typically a 

family house where no engineer is needed – and to an 

engineer only if it serves a singular structural purpose 

– typically built infrastructure such as a bridge where

no architect is needed. A high-rise building typically 

needs both, an architect and an engineer.

The more the form of a building or structure 

develops from its flow of forces, the more it is under 

the responsibility of the engineer.

Especially due to the fact that most infrastructure, 

such as towers, power plants, long-span roofs and 

bridges, is large and long-lasting, a responsible 

engineer will seek the advice of an architect or a 

landscape designer when deciding on the material or 

the scale of their bridge or sports hall in an urban or 

natural environment.

It is only culture that can convert our built 

environment into civilization.

Shells play a special, singular role for engineers. Their 

shape directly derives from their flow of forces, and 

defines their load-bearing behaviour and lightness, 

saving material by creating local employment, their 

social aspect. This is especially true for thin concrete 

shells with their characteristic curvatures: single 

curvature (cylindrical and conical), synclastic (dome-

like), anticlastic (saddle-like) or free (experimental).

If well formed, there are no bending but membrane 

forces only (axial compression and tension) in a 

shell, permitting its thickness to be around 80mm 

for reinforced or prestressed concrete, even down 

to 12mm for fibre reinforced concrete (Fig. 0.1). 

Though these concrete shells initially do not leave 

much space for an architect (or even for the fantasy 

of an engineer), it is fortunately not unusual that the 

two collaborate fruitfully or that an engineer himself 

has the courage and imagination to go beyond strict 

logic.

So Pier Luigi Nervi’s Palazzetto dello Sport in Rome 

would have fulfilled its purpose at considerably lower 

cost with a tensile ring on vertical supports instead of 

the inclined Y-shaped columns as built, but it would 

have looked like a boring and ugly tank (Fig. 0.2). Only 

a creative engineer could have made such a proposal 

as built!

In case of the large hypar roof for the Hamburg 

Alster-Schwimmhalle, the architect insisted that the 

edge beams should be free cantilevering beyond the 

facade. This caused vivid discussions, because according 

to the classical shell literature a hypar shell cannot 

transfer shear forces from edge beams but needs direct 

support as evident from the wonderful Candela shells 

(Fig. 0.3).

But the architect insisted and thus made us find a 

revolutionary though very simple solution by super-

imposing the classical saddle surface for the surface 

loads with the straight line generators’ surface for 

edge loads (Fig. 0.4). The result was a perfect structure 

thanks to the insisting architect.

During the last decades concrete shells lost more 

ground to: 1) cable nets; 2) textile membranes; and 

3) steel grids. In terms of their load bearing, these
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FOREWORD: ON ARCHITECTS AND ENGINEERS IX

Figure 0.1 Bundesgartenschau Pavilion, with a 12mm fibre 
reinforced concrete shell, Stuttgart, 1977

Figure 0.2 Palazzetto dello Sport by Pier Luigi Nervi, Rome, 
1958

Figure 0.3 Hypar shell with direct edge beam supports for the 
Church of San José Obrero by Félix Candela, Monterey, 1959

can also be considered as shells. Let us discuss one 

example for each of them.

Cable nets

In 1967, the international competition for the sport 

fields of the 1972 Olympic Games in Munich was won 

by architects Behnisch+Partners from Stuttgart, even 

though they hardly fulfilled the requirements. In fact, 

they instead brought in an idea which was absolutely 

convincing, to bring together under one continuous and 

floating roof all sports facilities: the stadium, the sport 

hall, the swimming hall, and all transitions connecting 

them (Fig. 0.5). This is exactly what we engineers 

expect from our architect if structure plays a significant 

role: an idea, a concept, a proposal, but leaving the 

structural solution to us. Together with Frei Otto and 

Fritz Auer from Behnisch+Partners, we developed a 
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X   JÖRG SCHLAICH

prestressed cable-net structure with 75cm quadran-

gular mesh-width, adaptable to any shape, subdivided 

by edge cables, supported by masts, held down by 

anchors and, finally, covered with Plexiglas. This huge 

but nevertheless light and floating roof has been very 

well accepted and is still very popular, thanks to an ideal 

cooperation between architects and engineers, each of 

them playing their role in a useful manner.

Steel gridshells

The courtyard of the Museum of Hamburg History, 

L-shaped in plan, was to be covered with a glass roof, 

as light and transparent as possible. The architect 

Volkwin Marg expressed with his sketch his wishes, 

his ideas which stimulated our adequate structural 

solution: a quadrangular mesh or grid, 1.2/1.2m from 

60mm × 40mm steel members, diagonally stiffened by 

thin, prestressed cables (Fig. 0.6). By change of angles, 

the grid can easily adapt to a smooth doubly curved 

transition between the two cylindrical shells, which 

themselves are stiffened by radial spokes (Fig. 0.6). 

Thus, the fear of the client that his historic building 

would suffer from the roof could be relieved.

Figure 0.4 The cantilevering hypar of the Alster-
Schwimmhalle, Hamburg, 1967

Figure 0.5 The cable-net structure of the Munich Olympic 
Roofs, 1972 (from left to right: Heinz Isler, Fritz Auer, Frei 
Otto, Jörg Schlaich, Fritz Leonhardt, Rudolf Bergermann and 
Knut Gabriel)
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FOREWORD: ON ARCHITECTS AND ENGINEERS XI

Textile membranes

As we know from our clothes, we can produce doubly 

curved surfaces from plane textile with the help of 

a cutting pattern. If prestressed (by reducing the 

cutting patterns), they behave under loads as an ideal 

membrane shell and can even permit convertible roofs, 

such as those for the Wolfgang Meyer Sports Centre 

Hamburg-Stellingen (Fig. 0.7).

In a fruitful cooperation of architect and engineer 

neither of them will impose their opinion because it 

is only the result that counts! To build in untouched 

nature can only be justified by creating a responsible 

building culture.

Figure 0.6 Sketched and completed steel gridshell for the Museum of Hamburg History, 1989

Figure 0.7 Roof for the ice skating rink of the Wolfgang Meyer Sports Centre Hamburg-Stellingen, Hamburg, 1994
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FOREWORD

Sharing the same spirit
Shigeru Ban

Shell structures are but one of many different, inter-

esting structural systems. If a gridshell structure 

happens to be suitable for a project, I use it, but 

otherwise I design another appropriate system. 

An architect shouldn’t concentrate on one type of 

structure, and should take notice of all possible struc-

tural systems. Without an understanding of structures, 

we cannot design a building. If you would have some 

preference, it would be very difficult to adjust to 

different programmes.

Frei Otto is a notable exception. He has his own 

specialities: cable-net structures, membrane struc-

tures and lightweight structures. He does not design 

everything, yet he’s also an architect. When I got the 

commission for the Japan Pavilion at the 2000 Expo 

in Hannover (Fig. 0.8), I immediately contacted him, 

and he agreed to collaborate with me. This had been 

a dream ever since I was a student. He does not like 

to make complicated connections, he always strives 

for minimum effort, minimum labour, minimum 

materials, and so on; ideals I really share with him. 

Like me, Frei Otto is not a form-making architect, 

meaning that we always design according to a combi-

nation of structural logics, architectural constraints 

and the programmes contained within the structure. 

That’s why our collaboration went very well. We share 

the same spirit.

If I design just a shell, I always try to look for the 

most appropriate, most structurally efficient shape 

to reduce bending moments and the size of the 

Figure 0.8 Japan Pavilion at Expo 2000, Hannover

Figure 0.9 Centre Pompidou, Metz, 2010
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FOREWORD: SHARING THE SAME SPIRIT XIII

members. However, I might not always have total 

freedom to design the most minimal shape for the 

material, because the shape of the shell is also defined 

by other constraints. For the Centre Pompidou in 

Metz (Fig. 0.9), a museum, we needed to have large, 

column-free spans for the galleries underneath. As a 

result, it was designed as a large, suspended surface: 

part of it is in tension, some part in compression. At 

first sight, the Haesley Nine Bridges golf clubhouse 

has a similar system (Fig. 0.10). But, because we could 

have a repetition of the supports, it developed into a 

set of compressive arches, creating the characteristic 

quality of the internal space. So, the shapes came from 

the programme.

The structural engineer Hermann Blumer worked 

on both of these projects, and was a key contributor to 

the design of the Centre Pompidou. After he joined 

our team, he went back to my original design and 

solved all the technical problems. Nowadays, for any 

timber structure, in any country, I work with him. I 

just send him the design and he solves all the technical 

issues. He immediately understands what I want to 

do: the collaboration between us is really perfect. I 

choose particular engineers for particular projects. As 

an engineering student, you have to develop your own 

interests and understand your own abilities and limita-

tions. Study under the guidance of a good professor, 

because an engineer always moves into a certain type 

of structure as a speciality. This is not a bad thing, 

but merely an observation. Some engineers are an 

exception and are capable of designing anything, like 

Jörg Schlaich, who is also good at shell structures. But, 

as I said, to me it is important that we can share the 

same spirit, the same priorities. Even if someone is a 

genius engineer, if we cannot share the same priorities, 

it doesn’t work out.

Figure 0.10 Haesley Nine Bridges golf clubhouse, Jeju Island, South Korea, 2010
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Introduction

In this book, leading experts from academia and 

practice describe design and optimization methods for 

the generation of efficient shell forms and topologies. 

Some of these techniques are part of the long history of 

the theory of shells, others have been developed or first 

used in practice by the authors themselves. Recent years 

have seen a renaissance of shells. Through advances in 

computational techniques and power, as well as novel 

fabrication and construction methods, engineers and 

architects have been imagining and creating elegant 

thin-shell structures. For shells to be efficient, their 

shape should depend on the flow of forces and vice 

versa and therefore their design requires a process of 

form finding. The ‘ideal’ form of a shell may need to 

fulfil additional architectural, mechanical or technical 

aspects necessitating some form of optimization. This 

makes the design and engineering of shell structures a 

highly involved process.

Shell Structures for Architecture: Form Finding and 

Optimization offers a comprehensive overview and 

hands-on textbook for the form and topology gener-

ation of shells. Intended for students, researchers and 

professionals, both in architecture and in engineering, 

this book presents many new and established methods, 

and explains them through theory and through 

working design examples.

This book is written so that each chapter exists as 

a complete entity in its own right, and can be read 

as such, but also so that the chapters fit together as 

a whole. Some of the chapters contain mathematics 

and for some people this aids their understanding 

and insight. However, it is equally true that some 

very gifted shell designers have used physical and 

computer models in their work and have not relied 

on advanced mathematical knowledge. Thus, it is 

not necessary to fully master the mathematics in 

one chapter before moving on to a following chapter. 

However, it is recommended to have some under-

standing of linear algebra and basic calculus, or 

have some references concerning these topics on 

hand. The mathematics applied to shell structures 

comes from diverse fields – geometry, structural 

mechanics, linear algebra, mathematical optimization, 

computer science and reliability theory – each with 

its own notation, and nobody is knowledgeable in 

all these fields. Engineers may know about struc-

tural mechanics, but not be well versed in geometry; 

mathematicians may know about geometry but not be 

particularly familiar with structural mechanics. Each 

person assembles their knowledge in a hotchpotch 

fashion since it is not possible to know all there is to 

know about shell structures. Nonetheless, this book 

is intended as a good starting point and provides 

advice on further reading throughout, explaining, for 

different topics, which references will best expand on 

particular topics.

Shells for architecture

The main application of the methods described in this 

book are shell structures in the context of the built 

environment.

Shell structures are constructed systems described by 

three-dimensional curved surfaces, in which one 

dimension is significantly smaller compared to the 

other two. They are form-passive and resist external 

loads predominantly through membrane stresses.

A ‘form-passive’ structural system does not signifi-

cantly, actively change its shape under varying load 

conditions, unlike ‘form-active’ structural systems 

such as cable or membrane structures. A shell 

transfers external loads to its supports predominantly 

through forces acting in the plane of the shell surface, 

which are called membrane stresses and might be 

compression, or a combination of compression and 

tension. The word ‘membrane’ might suggest a film or 

fabric that can only carry tension, but the compressive 

stresses in a steel, concrete or masonry shell are still 

called membrane stresses. A ‘thin’ shell has to be 

sufficiently ‘thick’ to carry these compressive stresses 
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2   INTRODUCTION

without buckling. Shell structures can be constructed 

as a continuous surface or from discrete elements 

following that surface. In the latter case, we speak 

of lattice, reticulated or gridshells. These terms are 

synonymous; ‘gridshell’ will be used throughout this 

book.

This book distinguishes between three types of 

geometries for shell structures:

Freeform, free-curved or sculptural shells are 

generated without taking into consideration struc-

tural performance. If they are shaped digitally, then 

they are often described by higher degree polyno-

mials (e.g. patches of Non-Uniform Rational Basis 

Splines (NURBS)).

Mathematical, geometrical or analytical shells are 

directly described by analytical functions. These 

functions are often chosen for their convenience in 

performing further analytical calculations and their 

ability to describe a shell’s shape for fabrication 

purposes. These are often lower degree polyno-

mials (hyperboloids, elipsoids and hyperbolic or 

elliptic paraboloids), or trigonometric or hyper-

bolic functions (the catenary).

Form-found shells include natural, hanging shapes 

associated with the funicular structures of Antoni 

Gaudí, Frei Otto and Heinz Isler, but also ‘strained’ 

gridshells that feature bending stresses. If the 

shape is found digitally, it is initially parameterized 

by piecewise or higher degree polynomials. Their 

final shape is the result of attaining a state of static 

equilibrium.

The general topic of shell structures is introduced in 

Part I of the book, ‘Shells for architecture’. Chapter 

1 elaborates on the vast range of possible shapes for 

shells. Chapter 2 describes how we can conceive good 

structural forms. Chapter 3 asks what a shell is, and 

discusses the matter from a mathematical standpoint. 

A brief history of the use of physical models in the 

design of shells is provided in Chapter 4. Chapter 5 

presents computational analogues for digital design 

and subsequent optimization, and focuses on different 

strategies for geometrical parameterization of curved 

surfaces. This chapter serves as an introduction to the 

numerical methods discussed in Part II and Part III 

of the book.

Form finding

The process of designing form-found shapes is called 

form finding or shape finding, where the former term 

is used in this book. Computational models for form 

finding may be a numerical simulation of the physical 

model involving hanging chains or cloth, or they 

might use imaginary properties that could not be 

simulated physically. In both physical and numerical 

hanging models, we note that form-active systems 

are exploited to find the shape of form-passive shell 

structures. We define the concept as:

Form finding is a forward process in which param-

eters are explicitly/directly controlled to find an 

‘optimal’ geometry of a structure which is in static 

equilibrium with a design loading.

For shells, the design loading is typically the dead 

load, most often being its self-weight. For masonry 

or concrete shells, or glass-clad steel gridshells this 

load is dominant. Timber is relatively light, but creeps 

under load and therefore the permanent dead load 

assumes a greater importance. The parameters that can 

be imposed to control the form-finding process are:

boundary conditions, supports, external loads;

topology of the model and;

internal forces, and their relationship to the 

geometry.

The geometry is an unknown; form finding is the 

generation of geometry. However, the process may 

require some arbitrary starting geometry. Once the 

final shape is found, the numerical model is updated 

by assigning real physical material and member 

properties. This new updated model serves as a basis 

for structural analysis.

Methods developed for the form finding of shell 

structures are discussed in Part II, ‘Form finding’. 

These methods solve the problem for static equilibrium, 

either without requiring material properties (force 

density method in Chapter 6 and thrust network 

analysis in Chapter 7), or by incorporating (fictitious) 

material or spring stiffness, and solving for dynamic 

equilibrium (dynamic relaxation in Chapter 8 and 

particle-spring simulation in Chapter 9). Part II is 
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INTRODUCTION   3

summarized through a comparison of these methods, 

applying them to a single chain in Chapter 10, before 

concluding with Chapter 11 on steering of forms.

Optimization

When additional objectives or constraints are intro-

duced, methods of structural optimization are needed 

to solve for them. These methods can be applied to 

structural shapes resulting from form finding, but 

also to freeform or mathematical shapes. Different 

strategies for the solution of constrained optimi-

zation problems, in the context of the structural 

design of shells, are presented in Part III, ‘Structural 

optimization’.

Structural optimization is an inverse process in which 

parameters are implicitly/indirectly optimized to 

find the geometry of a structure such that an 

objective function or fitness criterion is minimized.

One can optimize for multiple objectives and does not 

have to be constrained to a single design loading. In 

this case, the objectives are evaluated based on their 

importance, either a priori using weightings or a poste-

riori by exploring the Pareto front. In multi-objective 

optimization, the objectives can include goals that are 

non-structural. Optimization often leads to a large 

set of feasible shapes, called the design space. In cases 

where such a design space is explored and we tend to 

more gradually develop a form, we may also encounter 

the term computational morphogenesis.

The ‘optimal’ shape in the design space is subject 

to a set of given requirements (the constraints such as 

allowable deformations) and is defined with respect to 

one (or several) objectives, such as:

the minimization of material and weight in a 

structure, aiming for material economy;

the minimization of deflections or dynamic vibra-

tions of a structure, ensuring serviceability of a 

structure;

the maximization of stiffness (i.e. minimization of 

structural compliance), aiming for efficient load-

bearing structures.

When using mathematical optimization for finding 

optimal structures, one needs to formulate a general 

definition of the optimization problem:

minimize f ( x )

⎧
subject to ⎨

⎩

g
i
( x ) ≥ 0, i = 1,…,m

h
i
( x ) = 0, i = 1,…,p

x
i
  x, i = 1,…,n

Here, an objective function f ( x ) of the n design 

variables x subject to m + p constraints is minimized. 

These constraints are also expressed as functions of 

the design variables and they may be either equalities 

h( x ) – for example, that certain lengths are fixed – or 

inequalities g( x ) – for example, that the height should 

not exceed some value.

Even though there is only one objective function, 

it can be a function of various quantities (e.g. cost, 

energy consumption), which are themselves functions 

of the design variables. Instead of just adding up 

these quantities, it is possible, for example, to 

minimize the sum of the squares of the cost and 

energy consumption, in which a weighting is assigned 

to give a monetary value to energy consumption. 

Alternatively, for multiple objective functions, a Pareto 

front is explored to assess the trade-offs between those, 

often competing, objectives.

Optimization problems are encountered in a vast 

number of fields, and methods to solve them can be 

roughly divided in two groups: the local and the global 

methods.

Local methods reach a local optimum, and therefore 

offer no guarantee in finding the global one, unless 

the problem is convex. The most common local 

methods are based on the computation (or approxi-

mation) of derivatives. Therefore, they require the 

functions to be differentiable, and the variables to 

be continuous (specific methods have also been 

proposed in the literature for discrete parameters).

The most popular global methods to find a 

global optimum are often based on an imitation 

of phenomena observed in nature. They belong 

to metaheuristic methods, which can be defined 

as general trial-and-error strategies guiding the 

search for optimal solutions in hard problems. In 

these methods, there is no guarantee either that the 
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optimal solution is systematically found, but they 

are designed for the purpose of finding a global 

optimum in complex problems and numerical 

experiments have demonstrated their efficiency 

in certain applications. These techniques include 

simulated annealing and evolutionary algorithms.

The chapters in Part III use both local and global 

methods. Chapters 12, 13 and 17 use local, gradient-

based methods. The remaining chapters of Part III 

describe metaheuristic techniques. Chapter 16 uses 

simulated annealing, whereas Chapters 14, 15 and 18 

apply genetic algorithms, which are a subset of evolu-

tionary algorithms. These are discussed in Appendix C.

Structural optimization is traditionally classified 

in three categories depending on the nature of the 

variables involved:

Shape optimization has variables acting on the 

geometry of the structure, without modifying the 

topology. Practically, in discrete structures, the 

node coordinates are often used directly as param-

eters to modify the geometry, but more advanced 

parameterizations are available (see Section 5.4 

and Appendix D).

Topology optimization deals with the situation 

in which the topology of the structure is not 

prescribed by the designer. The structure’s 

topology is defined by the connectivity of the 

nodes in the structure, and the existence or 

absence of elements.

Sizing optimization has variables representing 

cross-sectional dimensions or transversal thick-

nesses (the geometry and the topology remaining 

fixed). For instance, in discrete structures (trusses, 

rigid frames and gridshells), the areas of the cross 

sections usually are the design variables.

Chapters 12, 13, 16 and 18 each deal with shape 

optimization, but towards different objectives and for 

different structural typologies. The approaches and 

parameterizations vary as well. Chapter 16 further 

discusses how to derive a discrete topology, or ‘struc-

tural pattern’, from the resulting shape. Chapter 21 

from Part IV explains shape optimization as it has 

been applied by Mutsuro Sasaki in his practice.

Chapters 14, 15 and 17 apply topology optimi-

zation. In Chapter 14, shape variables are also 

included, whereas Chapter 15 includes sizing optimi-

zation. Chapter 17 discusses continuum topology 

optimization, which aims to find the optimal layout 

of material in a given region, but applies this also to 

shape optimization.

Precedents

Throughout the book, examples are given of existing 

shell structures. Part IV, ‘Precedents’, provides more 

specific insights from built examples. Chapter 19 

compares two seminal gridshell structures: the 

Mannheim Multihalle and the roof of the British 

Museum’s Great Court. In contrast, Chapter 20 

compares two types of continuous concrete shells: 

the geometrical shapes by Félix Candela and the 

form-found shapes by Heinz Isler. The final chapter, 

Chapter 21, gives an overview of Mutsuro Sasaki’s 

concrete shell structures.

The book concludes with ‘The congeniality of 

architecture and engineering’, a short note on the 

future and potential of shell structures.
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CHAPTER ONE

Exploring shell forms

Shell structures will always have a role for architecture 

and engineering. More so than any other structural 

system, shells have the ability to create eye-catching 

forms, to provide freedom for design exploration 

and to resist loads efficiently. These attributes call for 

sustained interest in the mechanics and design of shell 

structures.

For even the most highly constrained geometry, an 

infinite number of solutions are available to the shell 

designer. But each different shell geometry has advan-

tages and disadvantages, and all shells are not equal. 

How then does the designer find shell forms that are 

inherently structural? Shell designers can invent forms 

by taking inspiration from nature, by innovating from 

precedent structures, or by exploring various form-

finding possibilities. In all cases, designers must seek 

forms that offer multiple load paths for all expected 

applied loads, and whose formal possibilities are 

closely linked to the modes of construction. Master 

shell builders are deeply concerned with the final 

appearance of their shells as well as the construction 

processes to create them.

Designers can always learn more from studying 

historical structures and this is especially true of shells. 

Traditional masonry shells have a long history in archi-

tecture and construction, and the inherent limitations 

of masonry material require that such structures work 

primarily in compression. Recent buildings such as 

the Mapungubwe Interpretive Centre, with structural 

shells made from unreinforced earthen bricks, demon-

strate the potential for contemporary projects to take 

inspiration from historical construction systems (see 

page 6).

1.1 Hooke’s hanging chain

The shell designer seeks forms to carry the applied 

loads in axial compression with minimal bending 

forces. The earliest example of structural form finding 

for an arch was published by English engineer and 

scientist Robert Hooke (1635–1703). In 1676, Hooke 

published ten ‘Inventions’ in the form of anagrams of 

Latin phrases in order to protect his ideas. The third 

invention would later become known as Hooke’s law 

of elasticity, for which he is most known.

The second (Fig. 1.1), describing ‘the true 

Mathematical and Mechanichal form of all manner 

of arches for building’ is given as:

Figure 1.1 Robert Hooke’s anagram on the means to find 
the ideal compression-only geometry for a rigid arch (Hooke, 
1676)

John Ochsendorf and Philippe Block
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8   JOHN OCHSENDORF AND PHILIPPE BLOCK

Th e solution to this architectonic riddle was posthu-

mously published by the secretary of the Royal Society, 

Richard Waller (1705), and read:

Ut pendet continuum fl exile, sic stabit contiguum 

rigidum inversum.

(As hangs the fl exible line, so but inverted will 

stand the rigid arch.)

Th e idea is simple: invert the shape of the hanging 

chain, which by defi nition is in pure tension and free 

of bending, to obtain the equivalent arch that acts in 

pure compression.

Th e form of the ideal arch will depend on the 

applied loading. For a chain of constant weight per 

unit length, the shape of a hanging chain acting under 

self-weight is a catenary (Fig. 1.2). But if the load 

is uniformly distributed horizontally, the ideal arch 

would take the form of a parabola, and the chain 

would take diff erent geometries according to the 

loading. In addition, the span/rise ratio (L/d) can vary 

widely, though most shell structures occur in the range 

of 2  L/d  10. Th us, even a simple two-dimensional 

arch has infi nite possible forms which would act in 

pure compression under self-weight, depending on 

the distribution of weight and the rise of the arch.

Th is principle, which will be referred to in this 

book as ‘Hooke’s law of inversion’, can be extended 

beyond the single arch and considered for shell struc-

tures of various geometries. In the context of shell 

structures, the term funicular means ‘tension-only’ 

or ‘compression-only’ for a given loading, typically 

considered as the shape taken by a hanging chain 

for a given set of loads. Th ree-dimensional funicular 

systems are considerably more complex because of 

the multiple load paths that are possible. Unlike the 

case of a hanging cable with a single funicular form 

between its two supports, hanging membranes have 

multiple possible forms. And unlike the two-dimen-

sional arch, the three-dimensional shell can carry a 

wide range of diff erent loadings through membrane 

behaviour without introducing bending.

To continue the analogy with Hooke’s hanging 

chain, a three-dimensional model of intersecting 

chains could be created. Th is hanging model could 

be used to design a discrete shell, in which elements 

are connected at nodes, or the model could be used to 

help defi ne a continuous surface. If hanging from a 

continuous circular support, the model-builder could 

create a network of meridional chains and hoop 

chains. By adjusting the length of each chain, various 

tension-only solutions can be found when hanging 

under self-weight only. Once inverted, this geometry 

would represent a compression-only form. Such a 

model would quickly illustrate that many diff erent 

shell geometries can function in compression due 

to self-weight. As an example, Figure 1.3 illus-

trates three shell structures supported on a circular 

base: a cone, a shallow spherical dome and a dome 

with an upturned oculus in the centre. All three 

forms can contain compression-only solutions due to 

self-weight according to classical membrane theory 

(see Chapter 3). Of course some solutions perform 

better under varying load conditions and the double 

Figure 1.2 Hooke’s hanging chain and the inverted rigid 
catenary arch, as depicted by Poleni (1748)

Figure 1.3 Examples of circular-plan shell structures which 
can act in pure compression under self-weight due to gravity: 
(a) conical shell; (b) shallow spherical dome; and (c) spherical 
dome with upturned oculus in centre
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CHAPTER ONE: EXPLORING SHELL FORMS   9

curvature of the dome is structurally superior to the 

single curvature of the cone in the event of asymmet-

rical live loading. The conclusion is clear: for networks 

of intersecting elements, there is no unique funicular 

solution.

1.2 Masonry shells in compression

Masonry shells have been built for centuries around 

the world in the form of arches, domes and vaults. 

Such shells exist primarily in compression, because 

masonry materials such as brick and stone are strong 

in compression and weak in tension. The challenge 

is to find geometries that can work entirely in 

compression under gravity loading. These geometries 

are not limited only to masonry, and will often 

provide efficient geometries for structures built of any 

material. However, for traditional masonry structures, 

the dominant loading is often due to the self-weight 

of the structure, and the applied live loadings due to 

wind or snow have a smaller effect.

As a practical demonstration of the multiple 

compressive solutions in three dimensions, consider 

the wide variety of shell geometries constructed 

in masonry tile commonly known as the Catalan 

vault or Guastavino method of construction. 

Compression-only tile vaults supported on a circular 

plan can take many possible geometries, ranging from 

conical to spherical as demonstrated by the structures 

in Figure 1.4. Even in brittle masonry structures, 

numerous openings can be made in shells and the 

resulting compressive solutions must therefore flow 

around the openings, as in the Bronx Zoo dome of 

1909 (Fig. 1.4, middle). The supports must be capable 

of resisting the large reaction forces at the base of 

these structures, and in particular, shallow domes will 

create a large outward thrust at the base, which is 

commonly contained with a tension ring at the base of 

the dome to maintain equilibrium. Though traditional 

masonry shells were often constructed without struc-

tural calculations, historical vault builders developed 

a keen awareness of the multiple equilibrium states 

possible in doubly curved masonry shells.

These surfaces could be built in masonry because 

they can contain thrust surfaces in compression, 

similar to a grid of interconnected hanging chains. 

Thus, Robert Hooke’s guiding principle for the 

Figure 1.4 (top) Conical shell by Rafael Guastavino, Sr., 
Bristol County Courthouse, Taunton, MA, 1891, (middle) 
shallow spherical dome, Bronx Zoo Elephant House by 
Rafael Guastavino, Jr., New York City, NY, 1909, and (bottom) 
shallow spherical shell with upturned oculus, Pines Calyx by 
Helionix Designs, Dover, 2007.

ideal form of arches can also offer guidance on the 

form of shells. For the primary masonry dome of 

St Paul’s Cathedral in London, Hooke suggested a 

cubico-parabolical conoid form to Christopher Wren 

(1632–1723), which is the ideal form of a compressive 

dome with zero hoop forces (Heyman, 1998) (see also 
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10   JOHN OCHSENDORF AND PHILIPPE BLOCK

Figure 1.5 Compression-only shell geometries supported on a circular plan found using thrust network analysis
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CHAPTER ONE: EXPLORING SHELL FORMS   11

Section 4.2). However, many more forms are possible 

for shells in masonry.

1.3 An infinite number of structural 
forms

The challenge of shell design is to find the appro-

priate form for the given problem. And the joy of 

shell design is that an infinite number of structural 

forms are waiting to be discovered. Even highly 

constrained boundary conditions can still lead to a 

vastly rich landscape of forms to explore. For example, 

by continuing the challenge of finding compression-

only solutions on a continuously supported circular 

base, one can discover an infinite array of options. 

Figure 1.5 demonstrates additional options found 

through thrust network analysis, which allows the 

shell designer to redistribute compressive forces 

within statically indeterminate networks (Chapter 7).

By exploring numerous boundary conditions, 

additional forms are possible. Historical spiral 

staircases in masonry are constrained within a cylinder, 

allowing the compression-only geometries to move 

beyond the planar support (Fig. 1.6). As with a 

dome or a cone in masonry, such spiral shells can 

stand in pure compression through a combination 

of meridional and hoop forces in equilibrium around 

a central oculus. It is important to note that the 

classical analysis methods applied to shells rely only 

on equations of equilibrium, and do not depend on 

invoking elasticity or other material properties in 

order to estimate the membrane forces in shells. The 

goal of the shell designer is to discover an array of 

forces in equilibrium with the applied loads.

While leading shell designers of the twentieth 

century demonstrated that numerous structural forms 

are waiting to be discovered, other projects demon-

strated the pitfalls of shell design. The shell-like 

forms of the Sydney Opera House were created from 

sections of a sphere, which simplified the geometry 

(see also Section 4.3). But the chosen geometry did 

not have any particular structural advantages, and 

H
flat vault

 = L
H

 × 6.78

H
dome

 = L
H

 × 1.00

*

H
spiral

 = L
H

 × 6.33*

 L
H

 *

 H
hoop

 

 H

 H
hoop

 

*

(a)

(b)

(d)

(e)

(c)

 * 
  

Figure 1.6 Guastavino thin-tile helicoidal stairway at the Union League Club, New York City, NY, 1901, and the force equilibria 
of (a) a dome with a circular oculus, (b) a circular flat vault with an oculus, and (c) a spiral stair can be explained with (d) the 
same force pattern topology, with radial arches and meridional hoops. The horizontal thrusts are balanced in the same manner, 
as visualized in (e) their shared reciprocal force diagram (see Chapter 7).
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could not function effectively as a structural shell. 

The resulting ribcage of beam elements must resist 

significant bending stresses and was very costly to 

build. In fact, the project took three times longer 

to build than originally expected and the final cost 

was more than fourteen times the original estimate. 

Though the Sydney Opera House is a successful work 

of architecture, it is a poor structure and it serves as 

a cautionary tale to designers seeking to build shells 

without careful attention to the flow of forces in the 

conceptual design stage.

1.4 Conclusion

Shell designers can take inspiration from any number 

of sources. But Robert Hooke’s powerful axiom 

provides a clear path forward: like the inverted chain, 

forces should flow in axial compression toward the 

supports with minimal bending. If Hooke’s chain 

is extended into a three-dimensional network of 

elements and if multiple support conditions are 

considered, then an infinite number of forms exist 

for compression-only shells. By minimizing bending 

forces, designers can build more efficiently and can 

make better use of limited resources. And by under-

standing and exploring the infinite possibilities for 

even a highly constrained design problem, shell 

designers can continue to discover new forms for 

centuries to come. The builders of masonry vaults have 

discovered a remarkable variety of shell forms acting 

in compression, and the proof of their success can 

be found in the longevity of these vaults that future 

generations will continue to admire.

Further reading

Form and Forces: Designing Efficient, Expressive 

Structures, Allen & Zalewski (2009). This book 

provides an exciting introduction to graphic statics 

for design, with a particular emphasis on form 

finding of funicular structures. Chapter 8 gives 

an overview of the key aspects to be considered 

in the design of an unreinforced masonry vaulted 

structure.

Equilibrium of Shell Structures, Heyman (1977). 

This book offers a succinct and clear description of 

basic shell theory, and describes the application of 

membrane theory to historical masonry structures 

such as domes and vaults.

Structural Analysis: A Historical Approach, Heyman 

(2007). This book describes the history of structural 

theory and introduces Robert Hooke’s principle of 

the inverted hanging chain in its broader historical 

context.

Guastavino Vaulting: The Art of Structural Tile, 

Ochsendorf (2010). This book describes the 

history and technology of the thin masonry vaults 

constructed by the Guastavino family in more than 

1,000 buildings in the late nineteenth and early 

twentieth centuries.
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CHAPTER TWO

Shaping forces

If you are reading this text, then you are a student, an 

engineer, an architect, or a person who is interested in 

the design of structures, specifically shells. You would 

like to learn how to design innovative structural forms 

by using context-sensitive parameters, exploring a 

variety of materials, creating aesthetical shapes and 

making your brainchild a reality. This is the creative 

mission, getting from the dream to the practical truth. 

But reality has its own constraints. In the world of 

structures, the dictates of science, statics and gravity, 

or in other words, the rules of nature itself, play the 

defining role. How does gravity influence a structure? 

Without gravity a dome would be flat. Gravity lies 

at the heart of our initial problem, but can also 

provide the beginning of the enjoyment in a creative 

design process. Where would be the excitement in 

designing a flat structure? The context of gravity is 

our playground. This design driver is a hard constraint 

but gives birth to a realm of intriguing complex spatial 

structural shapes.

No gravity, no fun.

Purely statically speaking, a structure is a device 

that channels loads to the ground. The funicular cable, 

for example, is a commonly misunderstood structural 

system (the word funicular comes from the Latin 

word funiculus, a diminutive form of funis, meaning a 

‘slender rope’, or ‘string’). The shape a cable takes under 

applied loads is the result of force equilibrium. The 

cable is a form-active system. With no flexural stiffness, 

the shape a cable assumes under applied loads mirrors 

the axial tensile forces acting in it, that is, the cable 

shape and the action line of forces coincide.

Well-designed shells, however, will mostly be loaded 

in compression. Their structural behaviour is different 

from form-active tensile systems in three ways:

the shell cannot self-adjust its shape to varying 

loading conditions (it is form-passive);

the deformations due to the elasticity of the 

material generate undesirable additional bending 

moments;

the shell can be in unstable equilibrium – just like 

a ball on top of a hill (Fig. 2.1).

A small disturbance – for example, a small horizontal 

external force – will irreversibly disturb the equilibrium 

of the ball or shell system.

In summary, variations in applied loading on a 

tensile system (such as cables, cable nets, technical 

textiles) induce variations in shape. The new, resulting 

shape remains stable, the resulting stresses stay in 

the allowable range and the structure is safe. In 

other words, the sensitivity of a tensile system to 

load or shape variations is low, and the robustness 

of the structure is high. Our aim is to design a 

robust structure that remains safe under expected (or 

unexpected) load variations. The balloon, a tensile 

internally pressurized structure (Fig. 2.2), is, in this 

context, a good example when subjected to unforeseen 

wind gusts; it remains safe.

Laurent Ney and Sigrid Adriaenssens

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


16   LAURENT NEY AND SIGRID ADRIAENSSENS

Physical, graphical or numerical techniques can 

exploit the form-active behaviour of tensile systems to 

generate forms. Interestingly enough, Antoni Gaudí 

(1852–1926), Heinz Isler (1926–2009) and Frei 

Otto (b. 1925) first exploited physical, gravity-loaded, 

inverted hanging models as form-finding tools for 

designing shell structures, based on ideas first intro-

duced in Hooke’s law of inversion (see Section 1.1): 

‘As hangs the flexible line, so but inverted will stand 

the rigid arch.’

Tensile shape inversion gives us forms for shells 

but no information about their stability or robustness. 

How safe and stable is our form-found shell? What is 

the influence of the material’s elasticity, shrinkage and 

creep? How does load variation affect the shell’s struc-

tural behaviour? These issues, negligible in a tensile 

structure, are crucial to the successful design of a shell. 

How to deal with these challenges in a form-finding 

process remains unclear to this day. Finite element 

methods can be a help but come with the caveat 

that they might lead to incorrect conclusions. Some 

general shell design guiding principles are known, 

such as a singly curved shell will be less robust than a 

(a)

(b)

(c)

Figure 2.1 Ball in (a) neutral, (b) unstable and (c) stable 
equilibrium positions

Figure 2.2 A balloon in a wind gust, a robust structure 
under unexpected load variations

doubly curved one, but these rules are not sufficient to 

design structurally efficient, safe shells.

Form-finding methods generate ideal shapes that 

are the result of stable force equilibrium. In the real 

world, the shell is the origin of force equilibrium 

and is itself not perfect! In the real world, we cannot 

construct exactly the desired ideal equilibrium shape. 

Due to the elasticity of the material, material imper-

fections, on-site construction tolerances and so forth, 

the built form will always slightly deviate from the 

perfect one. The shell should be able to manage this 

inherent difference as well as unpredicted load varia-

tions. In fact, we want to construct a structure that 

keeps the equilibrium of forces while being as close 

as possible to the form-found surface. If we achieve 

this objective, structural material is minimized and the 

resulting design is efficient, light and economic.

Like in the chicken and the egg quandary, we are 

trying to find a suitable, real structural design with an 

ideal force equilibrium situation. Caveat lector – the 

final form governs the channelling of forces rather 

than the forces determining the shape.

We have seen that gravity is a tough constraint 

in the design process. Do we conclude that gravity 

is a limitation of creativity? No, we believe that the 

possibilities of structures are infinite. We can call 

them optimal structures, whatever optimal means. The 

world of optimal forms is immense. We can compare 

it to a Pareto front, in that the optimal solution is 

never unique but rather an accumulation of ideal 

solutions. This being said, the world of bad solutions is 

also infinite. Chances of designing a terrible structure 

are of course higher. Compared to the universe, the 

optimal systems are the stars and the bad solutions 

are the rest of the universe. Pursuing this train of 

thought, galaxies are the different possible typologies 

of structures. Looking at the widespread construction 

of arbitrarily bulging, organic forms, or ‘blobitecture’, 

we see that it belongs to the emptiness of the universe 

and not to the stars. Strangely enough, starchitects 

are responsible for most of this contemporary design 

trend.

We see three reasons for this phenomenon:

architectural dematerialization or virtualization;

limitless finite element power;

engineering design education and practice.
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First, current architecture is shifting from the real 

to the virtual world. In the design process, a lot of 

thought and perspiration goes into the creation and 

rendering of a digital three-dimensional model. The 

virtual images show no difference when compared 

with pictures of a realized design. The crucial 

architectural marketing cycle can be reduced from 

sketch–plan–build–reality–picture–publish to sketch–

render–publish. To be a celebrated architect, there is 

no longer a need to construct. A new generation of 

architects has built their fame in a virtual world. It 

is faster and easier. But this virtual world does not 

have the same rules and constraints as the real one: 

no gravity, no budget, no rain, no snow and no sun, 

nothing besides geometry. It stimulates image archi-

tecture. The actual realization of the image comes as an 

afterthought. Unfortunately, the structural solutions 

necessary to make these new shapes possible typically 

use an awkward and significant amount of material.

Second, the increasing power of structural design 

tools through Finite Element (FE) analysis gives us 

the feeling that everything is possible. Like Zarathustra, 

we master nature by building against it and not with 

it. This display of trendy demiurgic control leads to 

clumsy, silly, expensive and complex structures and 

occurs because of a lack of structural thinking in 

the preliminary design process. As engineers, we can 

always find solutions to difficulties in the post-design 

phase instead of trying to avoid these problems in the 

first place.

Third and last, any structural engineering ‘design’ 

course mostly focuses on FE modelling and code 

verification. Too few courses teach how to design 

an efficient structure, how to develop the right form. 

For most engineers this domain appears mysterious, 

complex and to be avoided. Due to the specificity 

of each project and time and cost restraints, form 

modification or optimization is difficult to integrate 

in a normal structural engineering workflow. In other 

related engineering disciplines (such as aerospace 

and automobile) or much older trades (such as ship 

building and armoury), optimization and modifi-

cation are commonplace. As a consequence, structural 

engineers will say how much but not how. Form only 

seems to belong to the architectural and not the struc-

tural world. Geometry rests on an untouchable pedestal. 

But, we have seen that shape is the fundamental 

parameter to obtaining structural efficiency in a shell. 

We can thus state that the first thing to generate is the 

form. Form belongs to the structural playground too!

The question remains: ‘How can we know if a shell 

is well conceived?’ A more difficult question still is: 

‘How can we design a good structure “ex nihilo”?’ This 

complex question cannot be answered in a few words; 

the aim of this book is to help us in this search. We 

can also learn from the past how to design for the 

future. We might ask ourselves why some historic 

structures remain interesting, appealing and intriguing.

The scalloped dome of the Hagia Sophia (537–

present) – one of the most ambitious, advanced and 

largest monuments of late Antiquity – seems to float 

above its nave and, in doing so, has a mystical quality 

of light. Pendentives transition the dome elegantly 

into the square shape of its support piers. Although 

this masterpiece looks simple, its design has a complex 

and subtle quality to it. The central dome we see today, 

built in 558, has withstood nearly 1,500 years in a 

seismic region.

Today, most engineers fear shells and domes: they 

are mysterious and difficult to assess and master. 

Today, we are not able – or should we say, willing – to 

design these curved systems. Historic arches, shells 

and vaults are too easily seen as risks instead of oppor-

tunities. Under the motto of ‘safety’, these structures 

are destroyed and replaced by common beam-column 

systems. This is regrettable: their great historic and 

aesthetical value is lost forever. A better understanding 

and assessment of their structural behaviour holds the 

key to their conservation. It is not a sort of roman-

ticism about historical structures that leads to these 

thoughts. Rather that shells and arches are highly 

efficient structures.

Vernacular vaulted structures can give us further clues 

to finding appropriate curved forms that evolve out of 

structural logic. The basis for their designs is informed 

by local reflections about urban and social planning, 

history, structure, stability, site, materials and local 

skills. In the highly dense urban fabric of the Cycladic 

islands, vaulted living units express the individual, yet 

emphasize the island’s unity, community and perma-

nence (Fig. 2.3). The island’s hilly sites challenge the 

builder to explore views, natural lighting and ventilation 

in their vaults. The lack of forests and abundance of rock, 

stone and clay drive construction techniques towards 
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the use of masonry, a composite material excellent in 

compression. These are some of the constraints that 

form the base for the design process. The anonymous 

local master builder manipulates the curved vaults to 

optimize height, light or views. Although the form 

emerges out of a structural rationale, all the contextual 

constraints and considerations contribute to the final 

form, adding an extra richness to it. These hybrid 

designs might not offer the best solution but produce a 

form that offers a solution to all constraints.

In our projects we aim to design force-modelled 

forms, rooted in a structural, economic, cultural and 

technological logic. The two-dimensional geometry of 

the 2011 courtyard roof of the Scheepvaartmuseum, 

or Dutch National Maritime Museum, in Amsterdam 

reflects the symbolism and the building’s history as 

a seventeenth-century gunpowder warehouse of the 

Dutch fleet (Figs. 2.4, 2.5 and 2.6, and page 14). Its 

grid is based on rosettes with loxodromes, figures 

on historical sea charts to mark out the courses of 

a ship. The dome’s three-dimensional form is based 

on the numerical shape inversion of a hanging chain 

net using the dynamic relaxation technique presented 

in Chapter 8. The concentration of constraints in 

one definite structural context leads to a design 

with a poetic overtone. Its shape is unattainable to 
Figure 2.3 (top) One of many vernacular, curved structures in 
the Cycladic islands, and (bottom) a typical formwork for a vault

Figure 2.4 Steel gridshell over the courtyard of the National Maritime Museum, Amsterdam, 2011
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anyone who attempts to generate it in an exclusively 

sculptural manner. This far-reaching combination of 

self-generated geometry, architecture and structure 

convinces us there is an infinite world of forms to be 

discovered. We see a new form of structural design 

emerging.

Figure 2.5 A geometric pattern, found on sixteenth-century sea charts, lies at the base of the gridshell mesh pattern of the 
courtyard of the Dutch National Maritime Museum, Amsterdam.

Figure 2.6 The Dutch National Maritime Museum as seen 
from outside revealing the facetted gridshell
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CHAPTER THREE

What is a shell?

Structures can be classified in many ways according 

to their shape, their function and the materials from 

which they are made.

The most obvious definition of a shell might be 

through its geometry. A structure or structural element 

may be a fully three-dimensional solid object, or it 

might have some dimensions notably smaller than 

others. A beam is straight and it is relatively long in 

comparison to its cross section. Thus it is defined by a 

straight line. An arch is defined by a curved line and 

a plate by a plane.

A shell is a structure defined by a curved surface. 

It is thin in the direction perpendicular to the surface, 

but there is no absolute rule as to how thin it has to 

be. It might be curved in two directions, like a dome 

or a cooling tower, or it may be cylindrical and curve 

only in one direction.

This definition would clearly include birds’ eggs 

and concrete shells, and nobody would argue with that. 

It would also include ships, monocoque car bodies 

(coque is one of the French words for shell) and aircraft 

fuselages, drinks cans, glasses cases (Fig. 3.1), all sorts 

of objects.

But this definition would also include tension 

structures such as sails, balloons and car tyres. If 

one wanted to exclude tension structures, one might 

stipulate that shells have to work in both tension 

and compression, but how about masonry vaults that 

can only work in compression? Most people would 

describe masonry vaults as a type of shell structure.

However, the word ‘shell’ has the implication of 

something relatively rigid, and this book is about 

such structures. We therefore need to have a separate 

category of tension structures to include sails and 

balloons as well as piano strings and fishing nets. Then 

we have six possible types of structure:

straight-line elements (beams, columns);

curved-line elements (arches, curved cables);

plates (flat surface structures such as slabs, walls);

tension structures (curved surface structures such 

as nets and fabric structures);

shell structures (curved surface structures typically 

of timber, concrete, metal or masonry);

fully three-dimensional lumps of material.

Figure 3.1 A glasses case is a shell

Chris Williams
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A colander (Fig. 3.2a) is a curved surface structure. It 

contains holes for draining food, but these holes do 

not stop it being a shell. It is a continuous surface 

with a relatively small area removed. A sieve (Fig. 

3.2b) is very similar, except that the surface is made 

from a large number of initially straight wires which 

are woven into a flat sheet and then bent into a 

hemisphere. It is also a shell, a gridshell.

Clearly there is some similarity between a sieve 

and a spider web – they are both lattice-like and are 

intended to catch things. The spider web is essentially 

flat and made up of straight elements and when the 

wind blows, it bows outwards like a sail and becomes 

curved. It therefore adjusts its shape to the loading 

(Fig. 3.3). We call this a ‘form-active’ structure. This 

feature is characteristic of tension structures. The 

sieve may be in tension, compression or a mixture of 

the two, but appears rigid. It does not significantly 

adjust its shape to the applied loading and, therefore, 

we call this a ‘form-passive’ structure. Where it is 

in compression, deflections lead to the structure 

becoming less able to carry the load, possibly leading 

to buckling. Columns carry loads via axial forces, but 

bending stiffness is required to stop buckling, and so it 

is with shells, although with shells buckling is resisted 

by a combination of bending and in-plane action.

The Temple of Mercury in Baiae, Italy (see page 

20), once the largest dome in the world until the 

Figure 3.2 (a) A colander is a continuous shell, and (b) a sieve is a gridshell

Figure 3.3 A spiderweb is a form-active structure

(a) (b)
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construction of the Pantheon in Rome, is an arche-

typal shell, is hemispherical, featuring an oculus at the 

top, and is included in our definition of the term ‘shell’.

3.1 How do shells work?

Shells use all the modes of structural action available 

to beams, struts, arches, cables and plates, plus another 

mode that we might call ‘shell action’, which we will 

now try to pin down.

Structural elements that approximate to linear 

elements (i.e. with one dimension greater than the 

other two such as beams, arches and cables) or to 

surfaces (i.e. with one dimension smaller than the 

other two such as plates and shells) all share the same 

property: they are much easier to bend than to stretch. 

We use the word ‘stretch’ to mean change in length, 

possibly getting shorter, a ‘negative stretch’.

Clearly a cable will stretch when we apply a tension 

to it. A column will undergo a negative stretch when 

we apply a compression to it. But if we apply more 

load, it will buckle and get shorter through bending, 

rather than axial strain.

A parabolic arch or cable can carry a uniform 

vertical load per unit horizontal length using only 

axial compression or tension. The component of load 

perpendicular to the cable is balanced by the axial 

force multiplied by the curvature. Thus load in kNm-1 

is balanced by a force in kN multiplied by the 

curvature in m-1. Note that curvature is defined as 

1/radius of curvature.

Other loads will cause bending moments in the 

arch or deflection of the cable. The arch-bending 

moment is the product of the thrust and its eccen-

tricity from the axis.

3.1.1 Flat plates and plane stress

In order to understand curved arches, we first learn 

about straight beams. Similarly, to understand shells, 

we first need to think about something simpler. We 

could start with arches and go from curved lines to 

curved surfaces. Or we could start with plates and go 

from flat surfaces to curved surfaces. Both approaches 

can be helpful, but let us start with plates.

A flat plate can be loaded by forces in its own plane 

(Fig. 3.4) or out of plane (Fig. 3.5). The term ‘plane 

stress’ is used for in-plane loading and it appears in 

all sorts of situations; for example, the bending of an 

I-beam. Clearly the beam is loaded perpendicular to 

its axis, but most of the stress in the web and flanges 

are in the plane of the steel plates. Out of plane 

loading of a plate or slab produces plate bending and, 

as we have already noted, it is much easier to bend a 

plate than to stretch it.

In Figure 3.4 we have introduced the components 

of membrane stress: normal stress in the x-direction  

x
 , normal stress in the y-direction 

y 
, shear stress 

perpendicular to the x-direction in the y-direction 

xy 
 and shear stress perpendicular to the y-direction 

in the x-direction 
yx 

. In-plane membrane stress is a 

central concept in shell theory and corresponds to the 

axial stress in an arch – as opposed to the bending 

stress. Membrane stress is usually quoted as a force 

per unit length crossing an imaginary cut, rather than 

force per unit area. Equilibrium of moments about the 

normal tells us that 
xy 
 = 

yx 
.

  
y
   

  
x
  

  
yx 

 

  
xy 

  

y 

x

Figure 3.4 Plane stress

The shear stresses 
xy 

 and 
yx 

 are in the plane of the 

plate. We also get shear stress perpendicular to the 

plate due to plate bending. These are not labelled in 

Figure 3.5 because the notation for plate bending is 

rather confusing.

Thus for plane stress we have three unknown 

stresses,  
x
 ,  

y
  and 

xy 
 = 

yx 
. We have two equations of 

equilibrium

  
∂

x ___ 
∂x

   +   
∂

yx
 ____ 

∂y
   = q

x

   
∂

xy
 ____ 

∂x
   +   

∂
y
 ___ 

∂y
   = q

y
 (3.1)

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


24   CHRIS WILLIAMS

in the x and y directions respectively. The variables  q
x
  

and  q
y
  are the loads per unit area applied to the plate, 

in its own plane, for example the self-weight of a wall. 

Thus we have three unknown stresses and only two 

equations of equilibrium so that plane stress is stati-

cally indeterminate.

If  q
x
  and  q

y 
 are both zero, the stresses can be written 

in terms of the Airy stress function ,

x
 =   

∂2
___ 
∂y2

  

 
y
 =   

∂2
___ 
∂x2

   (3.2)

xy
 = 

yx
 = −   

∂2
____ 
∂x∂y

  

so that they automatically satisfy the equilibrium 

equations (3.1). Note that even if  q
x 
 and  q

y 
 are zero, 

the plate can still be loaded at its edges.

If the plate is elastic we can solve for  and hence 

the stresses by using the stress-strain relationships,

x
 =   1 __ 

E
   (

x
 − 

y
)

 
y
 =   1 __ 

E
   (

y
 − 

x
) (3.3)

xy
 =   

2(1 + )
xy
 _________ 

E
  ,

where E is Young’s modulus and  is Poisson’s ratio, 

together with the compatibility equation,

   
∂2

x ____ 
∂y2

   −   
∂2

xy
 ____ 

∂x∂y
   +   

∂2
y
 ____ 

∂x2
   = 0. (3.4)

The compatibility equation comes from the fact that 

our three strains  
x 
 = ∂ u

x  
/∂x,  

y
  = ∂ u

y
 /∂y and  

xy
  = 

∂ u
y
 /∂x + ∂ u

x
 /∂y are the result of only two components 

of displacement,  u
x 
 and  u

y
 , which can be eliminated by 

differentiating the strains twice and subtracting.

We finally end up with just one equation,

 4 =   
∂4
___ 
∂x4

   + 2  
∂4

______ 
∂x2∂y2

   +   
∂4
___ 
∂y4

   = 0, (3.5)

which is known as the biharmonic equation. Even 

though it looks complicated, it actually behaves very 

well and is not difficult to solve (Timoshenko & 

Goodier, 1970).

3.1.2 Membrane theory of shells

In the membrane theory of shells, we still have 

three components of membrane stress, exactly as in 

plane stress. But, we now have three equations of 

equilibrium. Two of them are in the directions tangent 

to the shell, exactly as in the case of plane stress. The 

third equation is perpendicular to the tangent to the 

shell surface. The load is balanced by the membrane 

stresses multiplied by the curvature. Here the load 

would be in kNm-2, the membrane stress in kNm-1 

and the curvature in m-1.

 Thus we have three unknown stresses and three 

equations of equilibrium so that shells should be 

statically determinate. Unfortunately, we have three 

partial differential equations of equilibrium in three 

unknown membrane stresses, and whether or not 

these equations have a solution depends upon the 

shape of the shell and the boundary conditions. This 

is a very difficult area of mathematics and it is often 

impossible to say whether a solution exists or not, let 

alone find one.

The simplest way to express this mathematically is 

using plane coordinates. The horizontal equilibrium 

equations (3.1) still apply if the stress components are 

redefined as the horizontal component of membrane 

stress per unit horizontal length. In particular, if 

a shell is only loaded in the vertical direction, the 

horizontal equilibrium equations are still satisfied by 

use of the Airy stress function. Then equilibrium in 

the vertical direction is simply

 w =   
∂2
___ 
∂x2

     ∂
2z ___ 

∂y2
   − 2  

∂2
____ 
∂x∂y

     ∂
2z ____ 

∂x∂y
   +   

∂2
___ 
∂y2

     ∂
2z ___ 

∂x2
  , (3.6)

where z is the height of the shell and w is the load 

per unit plane area, both assumed to be known 

Figure 3.5 Plate bending
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functions of x and y. Th is equation may not look any 

more complicated than the biharmonic equation (3.5), 

but depending upon the shape of the shell and the 

boundary conditions, it may be impossible to solve 

for . Equation 3.6 is ‘exact’ in that it does not assume 

that the slope of the shell is small.

inextensional deformation of any surface of revolution, 

with particular reference to the hyperboloid of one 

sheet – the cooling tower (Rayleigh, 1890). However, 

attaching the cooling tower to the ground prevents 

these modes.

Th e diff erence between the dome and the cooling 

tower is that the dome is synclastic and has positive 

Gaussian curvature whereas the cooling tower is 

anticlastic and has negative Gaussian curvature. 

Kelvin (1824–1907) wrote: ‘We may divide curved 

surfaces into Anticlastic and Synclastic. A saddle gives 

a good example of the former class; a ball of the latter. 

Th e outer portion of an anchor-ring is synclastic, the 

inner anticlastic’ (Kelvin & Tait, 1867). Here saddle 

refers to that on a horse and an anchor-ring is a torus.

Th e Gaussian curvature is the product of the two 

principal curvatures on a surface and they are of opposite 

sign on a cooling tower. Gauss’s theorem (Th eorema 

Egregium) tells us that the Gaussian curvature of a 

surface can be calculated by only measuring lengths 

on a surface, and therefore inextensional deformation 

does not change the Gaussian curvature. A developable 

surface is a surface with zero Gaussian curvature which 

can be laid out fl at. Examples include cylinders and 

cones. Gauss’s Th eorem is derived in Appendix B.

Th e Cohen-Vossen theorem from diff erential 

geometry tells us that it is not possible to deform a 

closed convex surface such as an egg without changing 

lengths on the surface; in other words, inextensional 

deformation is impossible. However, part of an egg 

can be deformed inextensionally, explaining why it is 

so much more fl exible. Th e stiff ness of the part can be 

regained by glueing it to a support to form a dome 

on a foundation. Th is is a diffi  cult concept because 

engineers are more used to thinking about forces 

rather than length changes. But a two-dimensional 

statically determinate pin-jointed truss can resist 

loads because it is not possible to deform it without 

changing the lengths of its members. Th e tension in 

a member is just the member trying to stop its length 

increasing.

3.1.3 Bending theory of shells and buckling

If a shell can undergo  inextensional deformation, 

then it will have to rely on bending stiff ness as well 

as membrane action in order to carry any load case, 

(a) (b) (c)

Figure 3.6 A dome, (a) without and (b) with an oculus, and 
(c) a cooling tower

If the shell is the wrong shape or it does not have 

enough boundary support, it may be a mechanism as 

far as the membrane theory is concerned and be able 

to undergo inextensional deformation, that is, defor-

mation in which the shell is bent without stretching.

Th e dome and cooling tower in Figures 3.6a and 

3.6c are statically determinate and cannot undergo 

inextensional deformation. Th e cooling tower has a 

big hole at the top, but putting a big hole in a dome 

produces a structure which is a mechanism, Figure 

3.6b.

Figure 3.7 shows a detail of inextensional defor-

mation in the region of a hole in a sphere. Th e 

deformation increases rapidly as the hole is approached, 

and the smaller the hole, the greater the deformation. 

However, for very small holes, the bending stiff ness 

takes over and controls the deformation and this is 

what happens with the colander. Th e appendix to the 

paper On bells by Lord Rayleigh (1842–1919) contains 

the mathematics necessary to fi nd the modes of 

Figure 3.7 Inextensional deformation in the region of a 
hole in a sphere
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including wind and snow. However, even if a shell 

has the correct shape and is properly supported, it 

must have bending stiffness to prevent buckling if 

there are any compressive membrane stresses. Thus, 

for efficiency, we want our shell to work primarily by 

membrane action, which is what shell action means, 

but we know that we must also have bending stiffness 

to resist buckling and inextensional deformation.

Shell buckling is particularly nasty because shell 

structures are so efficient. Almost no deflection occurs 

and then suddenly there is total collapse. Paradoxically, 

the less efficient the shell, in terms of shape, trian-

gulation of the surface and boundary support, the 

better it behaves in buckling. This is because bending 

action of shells requires much more deflection than 

membrane action and therefore small irregularities in 

shell geometry and other initial imperfections have 

less effect.

Experiments show that a properly supported 

shell working primarily by membrane action can 

never support anything like the theoretical ‘eigen-

value’ buckling load or ‘linear’ buckling load even 

when the utmost care is taken to eliminate initial 

imperfections. The analysis of shell buckling by hand 

calculations is effectively impossible, even eigenvalue 

analysis of a spherical shell is very difficult and, as 

we have said, gives wildly optimistic answers. This 

means that there is no option but to use computer 

analysis, but this is quite an esoteric area, and 

even though many programs offer analysis for shell 

buckling, the results should be treated with a great 

deal of circumspection.

3.2 How much do we need to know 
to design a shell?

In the previous section, we tried to describe how shells 

work in a relatively qualitative manner. It should by 

now be clear that it is difficult to derive the equations 

(particularly for the bending theory) and usually 

impossible to solve them, except for the membrane 

theory for very simple shapes.

The theory of shell structures, as described in such 

classic works as Novozhilov (1959), Flügge (1960), 

Green & Zerna (1968), Billington (1982), Calladine 

(1983) is very mathematical. In Appendix B, there is 

an introduction to the differential geometry and the 

theory of shells, leaving a detailed reading to those 

with a strong constitution.

Thus in practice one has three possible approaches:

simple hand calculations ‘informed’ by the classical 

theory of shells;

numerical analysis using a computer;

physical testing.

Numerical analysis almost invariably uses the finite 

element method (see also Appendix A) in the form of 

shell elements for continuous shells or beam elements 

for gridshells. The derivation of the finite element 

equations does not really depend very much on the 

theory of shells, except for being able to work in curvi-

linear coordinates.

The shape functions of the finite element method 

produce algebraic equations. These equations may 

be linear or nonlinear according to the material 

behaviour and whether one is concerned with 

buckling. The equations might be solved using an 

‘implicit’ method involving inversion of a stiffness 

matrix or an ‘explicit’ method such as dynamic 

relaxation or Verlet integration.

However, the structural behaviour of shells can 

be so complicated that numerical predictions may 

be inaccurate and so there is still a place for physical 

testing. Physical testing of ‘sketch models’ can also 

give a qualitative insight that cannot be obtained 

from a numerical analysis.

3.3 Funicular shells

Figure 3.8 shows funicular polygons. The rope 

automatically adjusts its shape to carry the loads 

without any bending moment. The rope is a mechanism, 

which moves to carry one particular load case. We have 

seen that, if we are lucky, a shell can carry any load by 

membrane action only. However, if our shell has the 

wrong shape or is not properly supported, it will only 

be able to carry certain loads for which it is funicular. 

We might also have a shell which does not have 

sufficient bending stiffness to work in compression, 

like a fabric. Or we might have a masonry structure 

which only works in compression. Thus, in masonry, a 

funicular load is one that can be carried without any 

bending moment or tensile membrane stress.

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


CHAPTER THREE: WHAT IS A SHELL?   27

Figure 3.8 Funicular polygons by Varignon (1725)
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Reversing the loads on a pure tension structure 

produces a pure compression structure, a fact used by 

Antoni Gaudí (1852–1926) for the Colònia Güell and 

Frei Otto (b. 1925) for the Multihalle.

3.3.1 Funicular arches and cables

A rope or chain hanging under its self-weight forms a 

catenary (from ‘catena’, the Latin word for chain). Thus, 

the catenary is a particular case of a funicular curve. 

The catenary is of some relevance to the design of shells, 

so it is worth deriving the mathematical form here.

If a cable is only carrying vertical loads, then the 

horizontal component H of tension in the cable,

 H = T cos = constant, (3.7)

where T is the tension in the cable and  is the slope 

between the cable and the horizontal. The vertical 

component V of tension

 V = T sin = H tan = H   
dy

 ___ 
dx

  . (3.8)

If the loading, w, is constant per unit arc length, s, then

 w =   dV ___ 
ds

   =   dx ___ 
ds

     dV ___ 
dx

   = cos dV ___ 
dx

  

 =   1 __________ 
 √

_______
 1 + tan2

dV ___ 
dx

   =   1 __________ 

 √
_______

 1 +  (   dy
 ___ 

dx2
   ) 2  

   H   
d 2y

 ___ 
dx2

  . (3.9)

This can be integrated to give

   
dy

 ___ 
dx

   = sinh  (   x __ c   ) , (3.10)

in which c =   w __ 
H

   and we have left out the constant of 

integration because it just moves the curve sideways. 

Integrating again,

   
y
 _ c   = cosh  (   x __ c   )  − 1, (3.11)

in which the constant of integration is chosen so that 

the curve goes through the origin. This is the equation 

for the catenary, the solid curve in Figure 3.9, while 

the dashed curve is the parabola, the funicular curve 

for when the load is constant per unit horizontal 

length, as is the case for a suspension bridge.

It can be seen that the two curves are identical 

when their slope is low and they only peel apart when 

the load per unit horizontal length on the catenary 

increases with slope. The catenary is one of the 

few curves for which there is a simple relationship 

between x and y and the arc length along the curve, s, 

starting from the bottom,

 s =  ∫ 
0

   

x

     √
_______

 1 +  (   dy
 ___ 

dx2
   ) 2   dx = c sinh (    x __ c   ) . (3.12)

It is relatively easy to find the funicular load for a 

given shape of cable or funicular shape for a given 

load, either by doing a simple physical experiment, 

mathematically, or graphically using graphic statics. 

Having found the shape, it can be inverted, or turned 

upside down, to find the best shape for the equivalent 

compression structure or arch.
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Figure 3.9 Catenary (solid curve) and parabola (dashed 
curve)

If an arch is carrying a funicular load, there will 

be no bending moment in it, which is equivalent to 

saying that the line of thrust is along the neutral axis 

of the arch. If a non-funicular load is added, it will 

produce bending moments and cause a deviation of 

the line of thrust.

The concept of funicular load applies particularly to 

structures that have to carry one dominant load case, 

perhaps their self-weight or some permanent load due 

to water or soil. Arch bridges such as the Gaoliang 

Bridge (Fig. 3.10) have to carry the extra weight of the 

masonry and fill over the support, together with the 

horizontal thrust from the fill. This means that more 

curvature is required towards the supports than would 

be the case for a catenary.
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Now let us suppose that we want to make a circular 

arch of varying thickness so its self-weight is funicular. 

If t is the thickness of the arch, R is its radius and g 

is its specific weight, or weight per unit volume,

gt = −   1 __ 
R

     dV ___ 
d

= −   H __ 
R

     d ___ 
d

 (− tan ) =   H __ 
R

   sec2 , (3.13)

so that

 t =   H _________ 
gR cos2 

, (3.14)

in which H/( gR) is a constant with the units of 

length. Note that H and V are now forces per unit 

width and H is positive for a compression. Figure 3.10 

shows how the shell gets thicker as it approaches the 

vertical. The stress in the arch

  =   H _____ 
t cos 

= gR cos , (3.15)

which reduces away from the top, the reverse of what 

happens with a catenary.

Another possibility is to say that the compressive 

stress  should be constant. If that is the case,

gt =   dV ___ 
ds

   = H  d __ 
ds

    ( − tan )  = − H sec2 d___ 
ds

   (3.16)

and

 H = t cos . (3.17)
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Figure 3.10 (left) The Gaoliang Bridge of the Summer Palace, Beijing, 1751–1764, resembles (right) a funicular circular arch of 
increasing thickness

Figure 3.11 Constant stress arch

Thus

  
g
 ___ 

ds ___ 
d

= −   1 _____ 
 cos 

=   cos _______ 
1 − sin 

 −   sin _____ 
 cos 

,

g
 ___ 
dx ___ 
d

= − 1,

   
g
 ___ 

ds ___ 
d

= tan . (3.18)

These equations can be integrated to give

g
 ___ s = log 

e
  (   cos _______ 

1 − sin ) ,
g
 ___ x = − ,

g
 ___ y = log 

e
  ( cos ) ,

 t =   
t

0 ____ 
cos 

= t
0
 e   (   

gy
 ____  )  , (3.19)
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where t
0
 is the thickness at the top of the arch.

Figure 3.11 shows a constant stress arch. Let us 

now think about scale. If the arch is made from a 

weak masonry we might have g = 25×103Nm-3 and 

= 0.5MPa = 0.5×106Nm-2. Therefore /( g) = 20m 

which means that if we decided to use the part of the 

arch in Figure 3.11 between -1.25 and +1.25 on the 

horizontal axis, the span would be 50m. If we used 

concrete at a stress of 25MPa, the corresponding span 

will be 1.25km for an arch under self-weight only.

Figure 3.12 shows a comparison of the catenary, 

circular and constant stress arches. They all have the 

same thickness and curvature (and therefore stress) 

at the top. However, the catenary will have stress 

increased by a factor of 2.5 at the supports. So the 

catenary is not a particularly good shape for an arch 

or a barrel, unless practical considerations mean that 

it has to have a constant thickness.

3.3.2 Uniform stress shell

The equivalent of the uniformly stressed arch is the 

uniformly stressed shell of revolution. Let us imagine 

a shell of variable thickness, t, which is only loaded 

by its self-weight, g per unit volume, where g is the 

acceleration due to gravity, and that there is a uniform 

compressive stress  (force per unit area) in the material.

The equilibrium equation in the radial direction 

tangent to the surface is

 grt   dz ___ 
dr

   = − t +   d __ 
dr

  (rt ) = − r dt __ 
dr

   (3.20)

and therefore

   
g
 ___ = −   1 __ t     

dt ___ 
dz

  , (3.21)

which can be integrated to give

 t = t
0
 e −  

gz
 ____ . (3.22)

This is exactly the same result that we obtained for the 

uniformly stressed arch, which is a special case of the 

uniformly stressed shell. In fact, this result applies for 

any plan shape of vertically loaded uniformly stressed 

shell. We can now use the equilibrium in the normal 

direction to find the shape of the shell,

⎡
⎢
⎢
⎣

d 2z ___ 
dr 2

  
 __________ 

  ( 1 +   (   dz ___ 
dr

   )  2  )    3 __ 
2
  
 
   +   

  dz ___ 
dr

  
 __________ 

r √
_______

 1 +   (   dz ___ 
dr

   )  2   
   

⎤
⎢
⎢
⎦

 +   
g
 __________ 

 √
_______

 1 +   (   dz ___ 
dr

   )  2   
   = 0 (3.23)

or

   
  d

 2z ___ 
dr  2

  
 ________ 

1 +   (   dz ___ 
dr

   )  2 
   +   1 __ r     dz ___ 

dr
   +   

g
 ___ = 0. (3.24)

The quantity in the square brackets is the sum of the 

principal curvatures of the surface.

This equation probably cannot be solved analyti-

cally and Figure 3.13 shows a numerical solution. The 

smaller scale shell in Figure 3.13 is the two-dimen-

sional cylindrical shell or arch from Figures 3.11 and 

3.12. It can be seen that the shell of revolution will 

span roughly twice as far for the same stress, 100m for 

(a) (b) (c)

Figure 3.12 Three arches: (a) catenary, (b) circular, and (c) constant stress
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but bending action is required to stop buckling and 

possible inextensible modes of deformation.

Th e more effi  cient the shell, the more sudden the 

buckling collapse.

Hand calculations for shells are very diffi  cult or 

impossible. However, some understanding of shell 

theory will help with the choice of shell shape and 

interpreting computer and model test results.

Further reading

Th eory of Shell Structures, Calladine (1983). Th is 

book is quite theoretical, but contains a clear expla-

nation of the relative importance of membrane 

action and bending action in shell structures.

Th eoretical Elasticity, Green and Zerna (1968). If 

you only own one book on shell theory, it has to 

be this one. It unifi es diff erential geometry and the 

theory of shell structures via the use of the tensor 

notation. You don’t have to read the whole book, 

you can jump from the end of Section 1.13 on page 

39 to Chapter 10 on page 373.

Figure 3.13 Constant stress shells – shell of revolution has 
larger span than cylindrical shell

Figure 3.14 Aichtal Outdoor Theatre with a ‘lip’ at the free 
edges, Germany, 1977

the weak masonry and 2.5km for concrete – this is if 

the shell is only carrying its self-weight. Th e thickness 

does not come into the expression for maximum span, 

but if the shell is too thin, other loads will dominate 

the stresses and the shell may also buckle.

3.4 Conclusion

Th e uniform stress shell illustrated in the previous 

section describes some sort of ‘optimum’, at leas t 

for the case when the self-weight of the structure 

dominates. However, in practice, there will be all sorts 

of functional and aesthetic constraints which will 

mean that the shell will not be structurally optimum.

Th e Aichtal Outdoor Th eatre, or Naturtheater 

Grötzingen (Fig. 3.14), by Michael Balz and Heinz 

Isler, is clearly not ‘properly’ supported all around its 

boundary. If it were, it would not fulfi l the architec-

tural and aesthetic constraints. However, the negative 

Gaussian curvature ‘lip’ at the free edges reduces the 

possibility of inextensional modes of deformation and 

therefore is an optimal design.

At the beginning we asked two questions: What is 

a shell? And how do they work? We can summarize 

our discussion as follows:

Shell structures can be geometrically represented 

by surfaces.

Shells are relatively rigid and this distinguishes them 

from tension structures such as balloons and sails.

Shells work through a combination of membrane and 

bending action. Membrane action is more effi  cient 
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The fundamental tasks of the structural engineer are:

to provide sufficient information about the form of 

a structure, the dimensions and relative disposition 

of its components, as well as material specifications, 

to enable a contractor to begin construction and;

to raise to a sufficient level the confidence of the 

engineer and builder that a proposed structure can 

be constructed and, once constructed, will work as 

intended.

In the context of designing a shell structure, this 

definition can be reduced to two questions:

How can a three-dimensional geometric shape 

be defined, described or communicated from one 

person to another? Or, put another way, how can a 

three-dimensional form be generated in the mind 

of its creator?

Which three-dimensional forms are most suitable 

for a shell structure in order that the designer gains 

sufficient confidence that the structure will work as 

intended?

Since ancient times, building designers have used 

both mathematical and physical models to answer 

both these questions. The concrete vaults and domes 

built by the Romans, which are the earliest ancestors 

of modern thin-shell structures, were cylindrical or 

hemispherical. In late medieval cathedrals, pointed 

arches and vaults, formed with two circular arcs, were 

widely used because they allowed the height and 

span of a vault to be varied independently. A large 

number of design procedures were developed using 

geometrical shapes (circles, squares and triangles) to 

help determine the shapes and dimensions of masonry 

arches and vaults as well as their abutments. In fact, it 

was widely believed that the resulting designs were 

suitable and efficient because they were based on 

these simple shapes – the same shapes that God had 

supposedly used to create the universe – and they were 

also used for designing the plans and elevations of 

entire cathedrals.

When designing a reinforced-concrete shell or 

timber gridshell today, many factors may affect the 

geometry of the shape; for example, the shape in plan, 

the rise, the loading, the desired degree of structural 

efficiency and, of course, the appearance and the 

nature of the space the architect wants to create. The 

type of shape chosen by an architect will depend on 

how it is created. It might be part of a mathemati-

cally definable, geometric shape such as a sphere, an 

ellipsoid, a cone, a toroid, or a hyperbolic paraboloid. 

Or it may be a natural, form-found shape created 

CHAPTER FOUR

Physical modelling and 
form finding
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using a physical process, such as suspending a chain, 

net or membrane, creating a soap bubble, inflating 

an elastic membrane (a balloon), or even crumpling a 

sheet of paper.

In order to analyse the behaviour of a shell structure, 

it was (until the development of iterative computer 

programs) essential that the engineer could describe 

(in mathematical terms, usually as an equation) the 

geometry of the shape. This is one reason why many 

barrel vaults have circular or elliptical cross sections, 

and three-dimensional shells are parts of a sphere, 

cone, ellipsoid, toroid and so on. Such shapes are also 

easier to set out on site since the dimensions can be 

easily calculated.

As well as needing to guarantee the safety of a 

structure, structural engineers are often under pressure 

to optimize the structure they are designing. Apart 

from minimizing cost, this might mean designing for 

minimum weight, or minimizing a certain dimension 

such as rise or thickness, or making the structure easy 

to build; for example, by simplifying the geometry. 

And deep down in the soul of an engineer, there is 

the intellectual challenge to design for structural 

efficiency and elegance in ways that reflect the laws of 

statics and elasticity; for example, designing a beam 

whose shape reflects the bending moment diagram, 

or a compression structure such as a concrete shell 

with a shape that reflects the funicular form. In 

reality, however, a structure must be designed to 

carry many different load cases; thus, for example, 

an ideal funicular shape is not suitable for a real 

structure – there will always be a need for a shell 

structure to have some resistance to out-of-plane 

bending. Nevertheless, in the case of shell structures, 

determining the funicular shape – or rather the family 

of funicular shapes corresponding to the many load 

cases – is an important step in achieving a structurally 

efficient design.

4.1 Physical models and real 
structures

Designers of structures have used small-scale models 

when it is beneficial to do so, especially in order to 

raise the engineer’s confidence in the design being 

proposed. This may have been for one of many reasons. 

For example:

the available calculation methods were too complex 

or time-consuming;

it would be too costly to build a full-size prototype;

it was believed that normal structural analysis 

methods would not adequately model the structure;

the geometry of the structure could not be defined 

using a mathematical equation;

the type of structure was unprecedented;

there were no other means available.

At an entirely intuitive level, many people believed 

(and still do) that a small model of a structure would 

provide some indication of how a larger version of 

the same structure would behave. For some types of 

structure, this is indeed the case. Masonry structures 

are one such category – an arch, a flying buttress or 

even a fan vault that works in a model will also work 

if scaled up twenty times to the size of a cathedral. 

However, there are many other types of structure that 

cannot be simply scaled up to give a similar structure 

that works at full size. There are two categories of 

structural behaviour: that which is independent of 

scale and that which is not.

4.1.1 Structural behaviour independent of scale

Some structural behaviour is independent of scale and 

can be scaled up linearly and used to predict full-size 

behaviour. For example:

the statical equilibrium (stability) of compression 

structures, including masonry arches, vaults and 

domes;

the shape of a hanging chain of weights or net; and, 

by Hooke’s law of inversion (see Section 1.1), of 

funicular arches, vaults and domes.

For these types of structural behaviour, using models 

to assist with design is a reasonably straightforward 

process. A model arch, vault or dome made of cut 

stones can be a reliable predictor of the behaviour of 

a similar, full-sized structure. Although we have no 

convincing evidence, this characteristic of masonry 

structures explains how they were able to develop 

so spectacularly, long before any scientific or mathe-

matical understanding of structures. The use of models 

of this type is discussed in Section 4.2.
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4.1.2 Structural behaviour dependent on scale

Other structural behaviour is dependent on scale and 

cannot be scaled up linearly. For example:

the strength and stiffness of a beam and;

the buckling strength of a column or thin shell.

It must have been the case, although we have no 

historical evidence, that ancient builders knew that 

making models of some types of structure did work as 

a design process, while for others, it did not. However, 

they probably did not realize the significance of what 

they knew. The earliest mention of the nonlinearity 

of scaling was by Galileo Galilei (1564–1642) who 

noted what we now call the square-cube law – while 

area increases with the square of the scale factor, 

volume, and hence the mass, increase as the cube of 

the scale. He used this observation to explain that 

the finite strength of bone material means the size 

of animals cannot be scaled up indefinitely. Nor 

did ancient builders realize that what distinguishes 

the two categories of phenomena is that the first 

is independent of the structural properties of the 

materials involved, while the second is not. This was 

first understood only in the eighteenth century when 

scientists began to understand and use the concept of 

elasticity and stiffness.

4.1.3 Models for scale-dependent structures

For a structure that must be designed to resist bending, 

such as a real shell or gridshell, many factors need to be 

taken into consideration when relating the behaviour 

of the model and the full-size structure, not simply 

the geometric scale. These may include mechanical 

properties of the materials in the model and the 

full-size structure (e.g. density, stiffness, Poisson’s ratio), 

non-mechanical material properties (e.g. the effects 

of temperature and moisture) and time-dependent 

material properties (e.g. creep, viscoelasticity) and, of 

course, the magnitude of the loads applied.

Often it may be necessary to make several scale 

models of a structure that represent the full-size 

structure and its behaviour in different ways, in which 

case the purpose of the model and the test must be 

carefully decided before making and testing the scale 

model.

Concrete shells, more than any other type of 

structure, and their designers have benefited from 

using model tests because the structural behaviour 

of shells is so complex. Not only were the available 

analytical methods often inadequate, but also the 

mathematics was complex and either beyond the 

ability of many designers or too time-consuming to 

perform within tight commercial constraints.

Finally, it should be noted that engineers have 

never relied wholly on the results of model tests. Test 

results complement the results of elastic and statical 

structural analysis, experience gained from previous 

full-size structures, and a designer’s own feel for struc-

tural behaviour which, of course, is often developed 

using models that bring the forces and deflections into 

a range that can easily be seen and felt by a person. 

Each source of information contributes to raising the 

confidence of the designers to the point where they 

feel sufficiently confident that their design will deliver 

a structure that behaves as intended.

4.2 Scale-independent models

A funicular shape or structure is one formed by a 

hanging chain or a string loaded with any number 

of weights. In structural terms, the forces are pure 

tension and no portion of the structure is subjected 

to bending. The military and civil engineer Simon 

Stevin (1548–1620) was one of the first to develop 

the mathematical representation of forces as vectors. 

In an appendix (Byvough) to his book De Beghinselen 

der Weeghconst (The Principles of the Art of Weighing) 

published in 1586, he illustrated the parallelogram 

of forces and showed several examples of suspended 

weights creating funicular shapes in both two and 

three dimensions (Fig. 4.1).

The engineer and scientist Robert Hooke (1635–

1703) worked with Christopher Wren (1632–1723) 

during the design of St Paul’s Cathedral in London 

(see page 32) and used his understanding of the 

inverted catenary, Hooke’s law of inversion (see 

Section 1.1), to help with the design of the dome. 

One of Wren’s sketches for the 33m diameter dome 

shows the shape of a chain suspended over a cross 

section of the building (Fig. 4.2). This simple model 

test would have helped raise Hooke and Wren’s confi-

dence that the dome would work satisfactorily as a 
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compression structure and is the earliest known use 

of a physical model being used to help determine the 

form of a structure. At the very least it demonstrated 

that the catenary arch lay within the masonry which 

is a general condition for the stability of a dome. 

Nevertheless, it appears that a uniform chain was used, 

rather than a series of different weights representing 

the voussoirs of different sizes. Also, there is no 

evidence of a three-dimensional hanging model being 

used, although that would have represented a dome 

more faithfully.

Giovanni Poleni (1683–1761) used Hooke’s 

principle in the 1740s to assess the safety of the 

hundred-year-old 41.9m diameter dome of St Peter’s 

cathedral in Rome, which had developed a number of 

alarming radial cracks. The original design was for a 

solid and hemispherical dome, like the Pantheon in 

Rome. The artist, architect and engineer Michelangelo 

(1475–1564) decided the weight had to be reduced 

and proposed a double-skin dome, like that used by 

Filippo Brunelleschi (1377–1446) at the dome of the 

Florence Cathedral. Finally, in the 1580s, the design 

by Giambattista della Porta (1535–1615) increased 

the height of the dome in order to reduce the outward 

thrusts at its base and also introduced several iron 

chains to carry the tensile stresses in its lower part. 

Poleni was one of several engineers appointed to 

study the safety of the dome and propose remedial 

works if necessary. As well as analysing the stability of 

the dome using statics, he also used Hooke’s hanging 

chain technique but, unlike Hooke, Poleni’s model 

had different weights representing the voussoirs 

of different sizes (Fig. 4.3). Like Hooke, Poleni 

considered only a two-dimensional arch, but justified 

this approximation by arguing that the dome could be 

seen as a series of radial arches, in the form of semi-

lunes (half-orange segments), acting independently 

of each other. Poleni used the model to determine 

the ideal shape of the masonry arch and, since the 

catenary lay safely within thickness of the arch, he 

concluded that each opposite pair of arches was stable, 

and hence, so was the whole dome. Nevertheless, he 

also recommended that additional ties were added to 

carry part of the hoop stresses.

A century later, the German engineer Heinrich 

Hübsch (1795–1863) also used Hooke’s technique, 

making hanging-string models to determine the 

weights of voussoirs needed to achieve the desired 

shape of an arch or vault shape (Fig. 4.4). Hübsch’s 

method was used in 1837 for the design of a 

(roughly) hemispherical dome covering a foundry 

Figure 4.1 Diagrams of funicular shapes by Stevin (1586)

Figure 4.2 St Paul’s Cathedral, London. Sketch of Hooke’s 
catenary superimposed on a proposed section of the dome
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able to reduce its thickness to just 175mm for the 

upper two-thirds of the dome.

During the second half of the nineteenth century, 

a number of books recommended the use of hanging 

models to establish the best geometry for arches and 

vaults. In the 1890 (revised) edition of Ungewitter’s 

classic book on Gothic construction, Karl Mohrmann 

specifically recommended the use of three-dimen-

sional hanging models. In the 1890s, Friedrich 

Gösling (1837–1899) also used both two- and three-

dimensional models for some of his designs (Fig. 4.5).

Rather better known is the work of the Catalan 

architect Antoni Gaudí (1852–1926) who used both 

two- and three-dimensional hanging models made 

with strings and bags of sand to help establish the 

forms of arches and vaults for several of his masonry 

buildings (Fig. 4.6). The most well known of these was 

the crypt of Colònia Güell (Tomlow, 2011). Gaudí 

used the results of his model tests to complement his 

use of both statical calculations and graphical statical 

methods to determine the forms of the inclined 

columns and vaults.

Heinz Isler (1926–2009) was the last of the great 

concrete shell builders of the twentieth century, 

and, like many before him, brought his own unique 

approach to the challenge. His disarmingly simple 

idea was to take into three dimensions Hooke’s 

technique by using a sheet of cloth (rather than 

a chain) to make hanging models, which he then 

scaled up to reproduce their funicular geometry at 

Figure 4.3 St Peter’s Cathedral, Rome, 1506–1626. Sketch 
showing Poleni’s hanging model superimposed on a section 
of the dome

Figure 4.4 Investigation of the form and construction of various vaults using a hanging chain, by Heinrich Hübsch, c. 1835

(Gießhauss) in Kassel, Germany. The 16m diameter 

dome was made with hollow clay pots which were 

both lightweight and fireproof. Using Hübsch’s 

method, the foundry owner who built the dome was 
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whose geometry he could define and whose struc-

tural behaviour he could then analyse in detail, using 

a statical/elastic mathematical model, to determine 

the appropriate reinforcement needed to achieve the 

necessary strength, stiffness and resistance to buckling 

(Chilton, 2000) (see Section 5.3.1 and Chapter 20 for 

more on Heinz Isler’s work).

Frei Otto (b. 1925) has been a great innovator in 

the use of models to determine the form of tension 

structures. He began using models in the 1950s as 

the only way of establishing the form of three-dimen-

sional, membrane and cable-net structures whose final 

geometry could not, at the time (before computers), 

Figure 4.5 Form finding of arches and vaults using hanging 
chains, by Friedrich Gösling, c. 1890

full size (Figs. 5.2 and 20.13). The results were often 

breathtaking for their elegance and daring (Fig. 4.7). 

One technique he developed was to soak a piece of 

cloth in liquid plaster or resin and allow it to harden; 

another was to suspend a piece of wet cloth outdoors 

during in a Swiss winter night to freeze the shape (Fig. 

4.8). Not only were these techniques able to generate 

the form of the main shell, but also the folds that 

provide stiffening to the free edges of the shells. Isler 

used other techniques to create both funicular and 

non-funicular structural forms, including using air 

pressure to inflate elastic membranes (Fig. 20.8). By 

these various means, Isler was able to generate forms 

Figure 4.6 Reproduction of Gaudí’s hanging model for the 
crypt of Colònia Güell, Barcelona

Figure 4.7 Garden Centre Florelite, Plaisir, France, 1966 by 
Heinz Isler
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be determined using analytical methods. Since gravity 

loads played a minor part in establishing the form 

of the tensile structures, the models themselves 

were made of membranes or nets with different 

characteristics: soap bubbles which have a constant 

surface tension; elastic sheets whose surface tension 

depends on the strain; and nets whose surface tension 

arises partly from the elastic extension of fibres, and 

partly from shear deformations of the net (squares 

to rhombuses) (see also Section 5.3.1). Otto and his 

colleagues at the Institute for Lightweight Structures 

(IL) in Stuttgart developed a large range of modelling 

techniques, including making soap bubbles up to 

1m wide (Fig. 4.9), as well as ingenious methods for 

measuring and surveying their complex forms which 

could not be defined using mathematical models. 

Having established the equilibrium geometry of the 

tensile structure, it was then possible to use analytical 

methods to determine in-plane stresses and forces at 

the boundary supports.

4.3 Scale-dependent models

Models used to study structural behaviour that is 

scale-dependent were of two main types: those used 

to study the elastic behaviour of shells loaded in ways 

which cause out-of-plane bending of the shell; and 

those used to study the buckling failure of shells due 

to high in-plane stresses.

For the competition for the Sydney Opera House, 

the architect Jørn Utzon (1918–2008) proposed a 

roof formed by two thin concrete shells, of undefined 

geometry, forming a shape that imitated the sails of 

yachts in the harbour. Various geometries for a thin-

shell roof were considered and engineers Ove Arup & 

Partners commissioned structural tests to be under-

taken on a 1:60 scale model of an early version (Fig. 

4.10). These model tests led to the conclusion that this 

structural form could not provide sufficient stiffness 

and strength to carry the various loads that might 

act upon the roof. During six years of design devel-

opment, many alternative structural solutions were 

considered which consisted either of substantial ribs 

supporting infill ‘shells’ or deeply corrugated shells 

(Fig. 4.11). A spherical surface was finally chosen to 

Figure 4.8 Hanging model by Heinz Isler. A wet cloth 
frozen during a winter night to create the form of a 
reinforced-concrete shell roof

Figure 4.9 Form-finding model by Frei Otto for a tensile 
membrane roof, using a soap bubble approximately 1m wide. 
Image inverted

Figure 4.10 A 1:60 scale model of a thin-shell version of 
the Sydney Opera House roof being tested at the University 
of Southampton
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simplify the construction of the ribbed arches using 

pre-cast concrete elements, and fixing the ceramic-tile 

covering to the concrete structure.

Ove Arup & Partners were also the engineers 

for the Bundesgartenschau Multihalle in Mannheim, 

constructed in 1973–1974 (see also Chapters 12 and 

19). The structure of the Multihalle is a form-found 

timber gridshell, on an irregular plan, covering around 

7,400m2. Being of unprecedented size and complexity, 

it tested the limits of structural analysis and a number 

of model tests were undertaken to help determine 

the optimal form for the grid and to supplement the 

manual and computer analyses.

The competition-winning design by the architect 

Carlfried Mutschler proposed a freeform timber 

gridshell, about 160m long with the largest shell 

spanning about 70m × 60m. Working with the 

architect Frei Otto, engineers Ove Arup & Partners 

used several different models to determine the overall 

form, the distribution of stresses in the grid and the 

best way to erect the structure. Close integration of 

the manual structural analysis, computer analysis and 

the results of testing the physical models was essential 

to meet the great challenges posed by this unpre-

cedented structure (Happold & Liddell, 1975).

First, a wire-mesh model, about 1:300 scale, was 

made to establish the basic form of the structure, 

consisting of two main halls connected by a linking 

tunnel (Fig. 4.12). This enabled a more accurate 

1:98.9 scale, hanging-chain model to be built to 

determine the geometry of the boundary supports 

that would give the best geometry for the roof. The 

mesh of hand-made wire links, each 15mm long, was 

hung from 80 supports whose positions were then 

finely adjusted to establish the boundary geometry 

that created the best funicular form, avoiding regions 

of low tension in the net (Figs. 4.13 and 4.14). 

The model was then surveyed using photogram-

metry, by Professor Linkwitz and his Institut für 

Anwendungen der Geodäsie im Bauwesen, Stuttgart 

University, to determine the true geometry of the 

Figure 4.11 Variations of the designs considered for the roof of the Sydney Opera House

Figure 4.12 A 1:300 scale wire-mesh model of the 
Multihalle to establish general form
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modulus one-quarter that of timber. It was loaded 

with a Uniformly Distributed Load (UDL), on which 

was superimposed an increasing point load to initiate 

a local buckling failure. This was repeated with higher 

UDLs and thus the critical UDL was determined. 

Four versions of the model were tested – with pinned 

and rigid (glued) joints between the laths, and with 

and without diagonal ties.

Dimensional analysis (see also Section 8.3) was 

used to compare the results from the tests on the 

Essen model and the behaviour of the real Essen shell. 

This established that the relationship between the 

model collapse load and full-size collapse load was in 

proportion to the value of the dimensionless number

   
q

critical _____ 

 (   EI
xx ____ 

aS3
   ) 

   (4.1)

for model and prototype, where q
critical

 is the collapse 

load per unit area, E is the modulus of the material, 

I
xx

 the second moment of area, a the spacing between 

laths, and S the span of the dome. These results 

demonstrated the benefit of the diagonal cables in 

inhibiting overall buckling, and also indicated that 

a double-layer grid would be needed for the larger 

Multihalle shell.

Based on the experience of the Essen model, a 

1:60 scale model of the main shell of the Multihalle 

was constructed in the same manner, using Perspex 

laths 1.4mm × 2.6mm, at 50mm spacing (Fig. 4.15). 

The 1m wide model was tested in the same manner 

as the Essen shell, applying the load using bundles 

of 100mm nails, each weighing 12.5g. Deflections of 

the grid were measured using dial gauges, and later 

Figure 4.13 Making the 1:98.9 scale hanging-chain model 
to determine the precise funicular form of the Multihalle shell

Figure 4.14 The finished hanging-chain model of the 
Multihalle surveyed using photogrammetry to determine its 
precise geometry

shell, and these results provided the coordinate data 

for manual and computer analytical models (see 

Chapter 12).

As there was no precedent for such a structure 

on this scale, it was considered essential to test an 

elastic structural model. However, there was also no 

precedent for making and testing such a model. It 

was decided to build and test a model of a similar, 

smaller gridshell dome that Frei Otto had previously 

constructed for the German Building Exhibition at 

Essen in 1962. This would give a better understanding 

of the behaviour of a gridshell dome, and would test 

the suitability of the model material and the proposed 

method of constructing the model, as well as deter-

mining the accuracy with which the model was able 

to replicate the behaviour of the full-size structure. A 

1:16 scale model was constructed using laths of 3mm 

× 1.7mm, at 50mm centres, made of Perspex with a 
Figure 4.15 1:60 scale Perspex model of the Multihalle 
tested in the elastic range
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refined by using wires and a lever arrangement to 

avoid the inevitable friction when a gauge touches the 

structure. The results were used to validate the results 

of the computer model and to provide a physical 

understanding of the nature of the buckling failures 

in the grid, and the location of critical areas in this 

complex three-dimensional structure.

Testimony to the success of the use of models 

during the design of this truly remarkable structure is 

that, despite being proposed as a ‘temporary’ building, 

it is still standing forty years later, after only one 

refurbishment in the early 1980s, and is a listed 

building.

4.4 Models and form finding in the 
twenty-first century

Physical models are as valid today as they always 

have been, as a means of creating potential geome-

tries for shell and lattice structures. However, their 

role is no longer to predict structural behaviour in 

full-size structures as it was, for example, for the 

Sydney Opera House or Mannheim Multihalle; this 

can now be achieved, usually with a sufficient level 

of confidence, using computer models. Nevertheless, 

computer models are known to be fallible, due to 

programming errors or inappropriate assumptions, 

such as boundary conditions, in the building of the 

computer model. Physical models can still provide 

a valuable independent check on the validity of the 

output of computer programs. While similitude 

between full-size and model parameters may be 

slightly inappropriate, they, and the behaviour of 

the model shell itself, will always be approximately 

correct; unlike a programming error which may lead 

to errors of an order of magnitude or more.

At the very least, physical models can be used to 

generate forms that are structurally optimal and that 

cannot be generated using the normal vocabulary of 

geometric shapes such as spheres and ellipsoids. A 

physical model can serve to highlight the degree to 

which a geometric form deviates from the optimal 

shape and, hence, how much bending the shell will 

be required to endure – and the more bending must 

be resisted, the heavier the structural elements will 

be. The ease with which computers can generate 

three-dimensional forms can, however, lead architects 

to forget what many of them knew in the 1960s 

and 1970s – that optimal structural forms do exist, 

and that they are not parts of a sphere, ellipsoid or 

(as currently seems prevalent) a toroid. It is surely 

vital that educators of both engineers and architects 

continue to use models with the enthusiasm that 

Heinz Isler did to develop a basic understanding of 

shells and gridshell structures.

Further reading

Structural Engineering – the Nature of Theory and 

Design, Addis (1990). This book contains useful 

discussion of the epistemology that underlies the 

relationship between the behaviour of models and 

full-size structures, and the role that models play 

in raising an engineer’s confidence in a design for a 

proposed structure.

Building: 3000 Years of Design Engineering and 

Construction, Addis (2007). This book contains 

much historical material regarding the devel-

opment of masonry vaults and domes, concrete 

shells and lattice shells, as well as model testing.

‘“Toys that save millions” – a history of using 

physical models in structural design’, Addis (2013). 

This paper is a review of model testing during the 

nineteenth and twentieth century, including many 

references to sources used for the present chapter.

Models in Architecture, Cowan et al. (1968). This 

book provides a survey of the use of models by 

engineers and architects written in the heyday of 

model testing of structures, before the dawn of the 

computer age.

‘Poleni’s problem’ is a 1988 paper reprinted in 

Arches Vaults and Buttresses: Masonry Structures and 

their Engineering, Heyman (1996). This article is an 

excellent review of what Poleni actually did when 

studying the stability of the dome of St Peter’s 

cathedral, and how he interpreted the results of 

his analytical calculations and the hanging-chain 

model.

Model Analysis of Structures, Hossdorf (1974). This 

is the best book on the subject.

‘Generating shell shapes by physical experiments’, 

Isler (1993). This paper is worth reading to under-

stand Isler’s philosophy in his own words, since he 

wrote very little.
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Storia dei modelli dal tempio di Salomone alla realtà 

virtuale, Piga (1996). This is a unique and excellent 

history of using models in building design.

Frei Otto – Spannweiten. Ideen und Versuche zum 

Leichtbau. Ein Werkstattbericht, Roland (1965). 

This is a study of Otto’s work at the time he 

was developing a large range of model testing 

techniques.

‘Gaudí’s reluctant attitude towards the inverted 

catenary’, Tomlow (2011). This is a recent paper 

taking a critical look back at what Gaudí actually 

did and why.
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CHAPTER FIVE

Computational form finding and 
optimization

Shells are in general very thin structures. This geomet-

rical anisotropy also leads to a physical anisotropy, 

expressed in load-carrying phenomena such as 

membrane action, bending and shear. Ideally, shells 

are optimized structures. They are used when heavy 

loads have to be carried or large distances have to be 

spanned. Their exceptionally favourable load-carrying 

capacity is due to their curvature that allows the shell 

to be in an almost pure membrane state. In other 

words, in contrast to bending, each fibre participates 

equally in the transfer of loads. And if the stress state 

tends to be homogeneous spatially, the situation is 

even more advantageous. Of course, these conditions 

have to reflect the construction material employed. 

A tension-oriented, thin fabric material has other 

requirements than a masonry or concrete structure, 

where compression is the favourable stress state.

This ideal situation is based on a number of 

pre requisites. It is well known that systems optimized 

with respect to selected parameters may be extremely 

sensitive to a change in these parameters or even 

other circumstances not considered. Optimization 

often is a generator of instabilities and imperfection 

sensitivities. This is particularly true for thin shells 

due to their extreme slenderness. Typical examples 

are buckling phenomena, or sudden failures due to 

excessive bending. A shell can thus be described as 

the ‘prima donna’ of all structures. The aforementioned 

physical anisotropy may lead to a physical sensitivity 

which almost automatically leads to a numerical sensi-

tivity of simulation models. As a consequence, any 

sound design has to enable the shell to carry the 

loads primarily by membrane action to avoid bending, 

in particular inextensional deformations (see Section 

3.1.2). At the same time, the shell needs to be as 

robust as possible, that is, imperfection insensitive. 

Most importantly, the design should guarantee these 

conditions for the entire lifetime of the structure.

This ideal situation depends of course on the 

usual design parameters, such as loads and their 

combinations, boundary conditions, and the material 

layout. It is obvious that the shape of a shell plays a 

dominant role in this design process. In this chapter, 

the geometry of the shell surface is synonymous either 

to form, usually used in the context of form finding, 

or to shape, as it is introduced in the community of 

optimization. It should be mentioned that in certain 

cases the design objective might just be the opposite, 

namely designing a shell for almost pure bending, 

inextensional deformations, and avoiding any stiff-

ening membrane action. Examples are unfolding 

processes for space antenna or of plant leaves.

Shells can handle different loads by membrane 

action only if certain conditions are met, but this is 

Kai-Uwe Bletzinger and Ekkehard Ramm
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of course not always the case. In the first half of the 

twentieth century, contrary to earlier centuries, roof 

shells were mainly based on pure, so-called geomet-

rical shapes. These are shapes defined by elementary 

analytical formulae, such as spheres, cylinders, elliptic 

paraboloids and hyperboloic paraboloids. One reason 

of course was that geometrical shapes could be 

handled by analytical shell analysis. These classical 

shapes do not usually lead to a proper membrane-

oriented response. Consequently, extra elements such 

as edge beams, stiffeners and prestressing had to be 

introduced. However, shape is a key parameter for 

the aesthetical appearance and can play a decisive 

role in the final design. This is particularly true in the 

context of shell roofs and meant that, contrary to the 

above-mentioned procedure where the response of 

a structure is determined for a prescribed shape, an 

inverse procedure had to be posed.

Given a few geometrical parameters, such as span 

and height, load, desired stress state and displacement 

limits, look for a natural and mechanically sound shape 

of the shell, at the same time satisfying the challenges 

of aesthetic and function as much as possible.

It has been shown that in many cases this concept 

renders more natural and elegant designs with free 

edges that avoid extra stiffeners such as heavy edge 

beams. In other words, following the laws of science in 

an optimal way often leads to an aesthetically pleasing 

structure. This brings us to the important issue of 

finding proper forms for thin shells.

5.1 Objectives for form finding

From these general statements we want to specify 

the general objective of an underlying form-finding 

concept:

Find the form and the thickness distribution of a 

shell for certain functional requirements, such that

boundary conditions and all possible load cases 

are considered;

material properties are taken into account (e.g. 

no or low tension for concrete);

stresses and displacements are limited to certain 

values;

an almost uniform membrane state results;

buckling, excessive creep, and negative environ-

mental effects are avoided;

a reasonable lifetime is guaranteed; and hopefully

manufacturing costs are justified;

the design is aesthetically pleasing.

Here we follow the principle form follows forces – also 

discussed as force follows form – modifying Louis 

Sullivan’s famous statement ‘form follows function’ 

(Sullivan, 1896). The aforementioned requirements 

and functional needs interact with each other and 

are in some cases even contradictory, such that a 

compromise has to be found. It is important to point 

out that, despite the many constraints governing 

a design, there is usually not one unique solution. 

Fortunately, the design space is not limited, allowing 

enough creativity and design freedom.

5.2 Infinity of design space and 
design noise

The principal challenge of form finding can be briefly 

explained by an illustrative example. The task is to 

design the stiffest structure made from a very thin 

piece of paper that is able to act as a bridge-carrying 

load. Because the flat piece of paper is able to only act 

unfavourably in bending, stiffeners have to be intro-

duced by folding the paper. However, there exist an 

infinite number of solutions, all of which create stiff 

solutions of at least similar quality, which are far better 

than the quality of the initially flat piece of paper (Fig. 

5.1). Surprisingly enough, even an arbitrary pattern 

of random folds appears to be a possible solution, 

although not being favourable from the manufac-

turing point of view.

The image of the randomly crumpled paper is an 

ideal paradigm for the infinity of the design space 

or, more ostensively, the design noise. This termi-

nology indicates an extremely busy design. Together 

with the expressions ‘filter’ and ‘mode’, it follows the 

notions in signal processing for generally undesirable, 

random signals, e.g. white noise. As for the example, 

the crumpled paper can be understood as a weighted 

combination of all possible stiffening patterns and 

one can easily think of a procedure to derive any of 

the individual basic solutions of distinct stiffening 

patterns by applying suitable filters to the design noise.
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In a general context, this means filtering out the 

essential shape parameters that mostly contribute to 

the objective. In a numerical context, a mathematical 

filter is chosen to condense the solution to a smaller 

set of geometrical mode shapes and to reduce the 

number of design degrees of freedom. This process 

is denoted as regularization or smoothing. It is clear 

that the kind of filter as well as the filter process can 

be freely chosen as an additional and most important 

design parameter. It is possible to define a procedure, 

as implied by the paper example, to first filter high-

frequency design noise, and second apply geometrical 

filters. It is, however, also possible to apply indirect 

filters by pre-selecting and favouring certain classes 

of solutions in advance, such as a stiffener pattern 

of certain cross sections and spacing, chosen because 

of manufacturing or aesthetical reasons. There is no 

doubt that the latter approach is the more ingenious 

one, as a large set of other solutions, perhaps even 

better solutions, might otherwise be undetected. It is 

up to the insight and imagination of the designer how 

to define a procedure of pre-selection, regularization 

or pre-filtering. Most often, however, this task seems 

to be a somewhat mysterious one, or a vague one at 

best. From this point of view, form finding truly is an 

art.

5.3 Design methods for shell 
structures

In the following sections, two methods for form 

finding of shells are discussed that satisfy, at least 

approximately, the criteria mentioned in the 

Section 5.1.

Figure 5.1 Stiffened shell structures made from folded paper: (top left) without stiffening, or with a (top right) coarse, (bottom 
left) fine, or (bottom right) random stiffening pattern
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In the first method, the shape of a membrane, 

deformed by a single, dominant load case, or design 

loading, is determined. An example is a hanging 

membrane, subject to gravity loads, that is inverted to 

form the final shape of a roof shell under dead load. 

This principle of an inverted hanging membrane can 

be investigated by two different procedures: experi-

mentally, using a real, small-scale physical model, or 

numerically, using a computer simulation applying 

large displacement membrane analysis. Depending 

on the respective physical problem, other design load 

cases may be investigated; for example, uniform or 

hydrostatic pressure load.

The second method discussed is the most general 

procedure, namely shape optimization, which can be 

combined with simultaneous thickness and material 

optimization. Usually, the overall topology for shells 

is prescribed by the conceptual design. If, however, the 

design allows a change of the initial topology – for 

instance, including further openings or designing the 

optimal layout of a gridshell – topology optimization 

as a generalized shape optimization technique can be 

applied.

5.3.1 Physical and numerical form finding

The hanging model principle, or Hooke’s law of 

inversion (see Section 1.1), is known to be one of the 

oldest form-finding methods for the design of arches 

and domes that are in pure compression by being 

free of bending. This principle allowed coping with 

the low- or no-tension material of masonry as the 

only available construction material at that time. By 

inverting the shape of the hanging chain, which by 

definition is free of bending, an equivalent arch that is 

in pure compression is obtained. As the structure is free 

of bending, the material is used in an optimal manner, 

which means that the structure can also be seen 

from the point of material minimization or stiffness 

maximization. For the exploration of the design space, 

the length of the chain is the one important control 

handle that defines the final structural height. If the 

inextensional chain is replaced by an elastic cord, the 

material properties serve as additional parameters 

which control the experimental result. The shape of 

the catenary is uniquely defined by the equilibrium of 

applied and reaction forces. Here the self-stabilizing 

effect of tensile forces in equilibrium serves as the 

aforementioned filter to detect the preferred result.

The situation becomes much more complicated 

if the hanging principle is applied to the design 

of domes and shells. The reason is that, due to the 

second dimension of the surface, there are always 

multiple possibilities for the forces to flow from the 

loading region to the supports. In the hanging model 

experiment, however, there is another very important 

complication when the one-dimensional chain is 

replaced by materials with a distinct two-dimen-

sional stress state, which is the additional ability of a 

membrane to carry load by in-plane shear action. As a 

consequence, the final deformation of a hanging cloth 

is dominantly affected by its two-dimensional elastic 

properties, in particular its in-plane shear resistance. 

Wrinkles may develop when the structure buckles 

in compression, at which point the load carrying 

behaviour is locally reduced to one dimension.

The alternative of a woven, orthotropic material 

of negligible in-plane shear resistance, however, is 

characterized by the orientation of the fibres. All 

together, the result of a two-dimensional hanging 

model experiment for the design of domes and shells 

is inevitably driven by the material properties and 

the cutting pattern of the cloth which is used for the 

experiment. These facts make it difficult to compare 

results of hanging model experiments with different 

orientations or types of materials or to explain certain 

phenomena such as the shape of shells at free edges. 

Often there is very little, if any, information recorded 

about the details of the material properties for the 

hanging membrane, or, even more importantly, the 

cutting pattern and orientation of material anisotropy. 

This ambiguity of the material used in hanging models 

has also to be reflected to the properties of the material 

of the built structure. The masters of form finding, 

such as Heinz Isler (see Chapter 20), made superior 

use of experimentation with different materials and 

cutting patterns, resulting in seminal structures such 

as the 1969 Sicli Factory in Geneva (see page 44 and 

Fig. 20.16). Isler developed very finely tuned proce-

dures with various materials from isotropic rubber to 

orthotropic textiles, which he carefully tailored for 

the applications at hand. Figure 5.2 shows examples 

of completely different shapes obtained by a hanging 

model experiment, using the same textile, but simply 
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modifying the angle of anisotropy. This experiment 

gives important hints about the secrets of this approach. 

Numerical simulations give similar results, obtained 

by large deformation finite element analyses with 

material anisotropy representing the warp and weft 

properties of a fabric (Fig. 5.2). The element geometry 

may, but does not have to be aligned to the fibre 

orientation. The experiments at Frei Otto’s Institute of 

Lightweight Structures (IL), University of Stuttgart, 

nicely show the effect of shear-resistant materials (Fig. 

5.3). Hanging forms made from shear-deformable 

cable nets give clear doubly curved surfaces whereas 

the shape generated by hanging cloths shows wrinkles 

and negative curvature at the free edges.

(a) (b)

Figure 5.2 Ice and polyester experiments by Heinz Isler versus numerical hanging models. Negative and positive curvature by 
modifying the angle of material anisotropy, either (a) parallel, or (b) diagonally aligned to the edge

Figure 5.3 Hanging model experiments from IL
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The physical hanging model experiment is an 

important tool in the conceptual design phase for 

whatever form-finding procedure will be finally 

chosen. It not only gives a lot of visual impression but 

also may provide substantial information for subse-

quent computer modelling. The numerical hanging 

models, as well as the optimization concept described 

in the next section, have the advantage that they 

automatically provide the geometrical data needed for 

subsequent structural analyses.

5.3.2 Structural shape optimization

The form finding described above – finding the final 

shape for a shell for desired or required constraints 

and objectives – is essentially an optimization process, 

usually followed in a trial-and-error manner, based on 

accumulated experience of the designer.

A logical progression is to cast this procedure into 

an automated approach of structural optimization 

(Fig. 5.4), demonstrated in Part II of this book. The 

key idea is that the three steps of design, namely the 

geometrical and material design, the analysis including 

the sensitivities, and the mathematical optimization, 

are iterated until the constraints of the problem are 

satisfied. In the terminology of optimization, these are:

the objective(s);

the equality and inequality constraints;

the upper and lower bounds of the design 

parameters.

The objective, or in multi-criteria optimization the 

objectives, play the most important role. They may 

be classical, like minimizing weight or mass, or 

maximizing the ultimate load causing buckling and/

or material failure, but may also be stress-levelling 

– getting a more or less homogeneous stress state 

(fully stressed design) – or minimizing strain energy, 

which is equivalent to maximizing the stiffness. This 

last parameter is a very promising objective for shells 

because it minimizes bending, yielding a membrane-

oriented design. But further objectives may also be 

used, such as maximizing ductility and toughness, or 

avoiding certain frequency ranges. Often, conflicting 

situations exist, so a compromise solution has to be 

found that weighs the different objectives.

The constraints are the usual design limits for 

stresses or displacements but may also be a prescribed 

construction mass/weight, or certain desired or 

undesired frequencies, just to mention a few. They 

may be defined as equality constraints (or as soft 

constraints) in the equilibrium equations.

The design parameters may be of different kinds. In 

the context of shape optimization, they are geomet-

rical parameters controlling the shape and thicknesses 

of the shell. Thus, these basic features, shape and 

thickness, are parameterized by shape functions 

interpolating the initial and subsequently optimized 

geometry from selected nodal values.

5.4 Parameterization

The definition of geometry can be based on concepts 

with different parameterizations. This section briefly 

describes the three most common versions. Appendix 

D includes an explanation of subdivision surfaces.

5.4.1 CAGD-based

The industrial state of the art in structural optimi-

zation is characterized by the application of simulation 

techniques where Computer-Aided Geometric Design 

(CAGD) methods, Finite Element (FE) analysis, and 

Nonlinear Programming (NP) are combined for the 

design parameterization, the response analysis and 

the optimization, respectively. The idea is to define the 

shape and 
thickness 

design

geometry

mathematics mechanics

optimization
structural

and sensitivity 
analysis

design loop

Figure 5.4 Three steps of shape optimization
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degrees of freedom for shape optimization and form 

finding by a few, but characteristic, control param-

eters of the CAGD model. Interestingly enough, the 

driving force behind the development of this approach 

was to find means to treat design and numerical noise 

as well as to avoid heavily distorted meshes. The 

solution is to use CAGD design patches and the 

related shape functions to prevent the high oscilla-

tions of numerical design noise. As a consequence, the 

design space is automatically reduced to the space of 

the chosen shape functions. The choice of a CAGD 

model is indeed identical to an implicit pre-selection 

of a design filter, which directly affects the result.

The design patches could be denoted as geometrical 

macro-elements, which in turn are subdivided by 

a finite element mesh. Typical representations use 

polynomial, Lagrangian interpolation, basis splines 

(B-splines), Bézier splines, or Coons patches as 

approximations, as shown in Figure 5.5.

Usually, C1-continuity between patches has to be 

enforced. This means that the patches should not only 

be continuous, but also have a continuous derivative, 

making them continuously differentiable. For example, 

applying continuity patches, as shown in Figure 5.5b, 

generates a surface shape without sudden changes in 

angle. This, in turn, reduces the number of geometrical 

parameters due to the constraints of the nodal degrees 

of freedom of the patches.

To demonstrate shape optimization, we use 

the example of the Kresge Auditorium at the 

Massachusetts Institute of Technology (MIT) in 

Boston. This reinforced-concrete shell was designed 

by Eero Saarinen (1910–1961) in 1955 as a segment 

of a sphere on three supports. The structure, shown 

in Figure 5.6, which is certainly appealing from an 

architectural point of view, is far from optimal with 

respect to the requirements and objectives discussed 

earlier. As a result, it needed heavy edge beams and 

is still today subject to substantial bending. This 
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Figure 5.5 CAGD-based shape definition with design patches: (a) one NURBS patch, (b) four design patches with continuity 
patches and (c) generated shape

Figure 5.6 Kresge Auditorium, Cambridge, 1955, by Eero 
Saarinen, as of 2003, with detail of support
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suggests that the structure is a candidate for fi nding 

a better shape, considering its structural behaviour. 

Th e original shape of the auditorium’s roof structure 

(Fig. 5.7b) was subjected to a process that uses shape 

and thickness optimization with the objective of 

minimizing strain energy. Even without an edge beam, 

an almost pure membrane response in compression 

(see also Chapter 3) could be achieved. Th e quality 

of the modifi ed design, shown in Figure 5.7a, was 

verifi ed by geometrically and materially nonlinear 

analyses, and compared to that of the original design.

It has to be noted that the initial shell almost 

collapsed when the scaff olding was lowered; it had 

to be additionally supported by integrating a column 

every third mullion. Th e present analysis for the 

original shell did not take these extra supports into 

account. Th e concrete was modelled with an elasto-

plastic material model. Geometrical imperfections 

were also taken into account. Figure 5.7 shows the 

dead load-displacement response for a representative 

point of the reinforced-concrete shell. It can be recog-

nized that the original design shows a failure already 

for the dead load. Th e load-carrying capacity for the 

optimized shell without edge beams is substantially 

higher.

5.4.2 FE-based applying fi lters

An alternative to CAGD-based parameterization is 

the FE-based parameterization. Since in such  a model 

all FE-nodes rather than only a few CAGD-control 

points can be activated for the shape defi nition, a 

huge design space is available. Now, explicit fi lters are 

applied for the selection of preferred optimal shapes. 

Th e procedure is such that the coordinates and the 

shape derivative at an FE-node are determined as the 

weighted mean of all the neighbouring nodes within 

the fi lter radius (Firl et al., 2012). Clearly, the fi lter 

decides which local optimum will be found from the 

design noise. As a matter of fact, this technique is 

based on sound theory and is strongly related to the 

method of subdivision surfaces (see Appendix D). 

Th e FE-based parameterization with fi ltering is most 

attractive for form fi nding and preliminary design 

because one can fi nd all possible solutions with the 

same geometric model whereas alternative techniques 

need laborious reparameterization. Modifying fi lter 

functions and sizes is of no eff ort at all and appears to 

be most eff ective for exploring the design space. Th is 

is shown by an example in Figure 5.8. Th e shape of a 

shell, supported on three points and subjected to self-

weight, is to be optimized for stiff ness. Th e ground 
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Figure 5.7 Nonlinear response of the Kresge Auditorium, for (a) the optimized shell without edge beams, and (b) the original 
shell with edge beams. The shape was parameterized with (c) six Bézier patches and control points

(a) (b) (c)

Figure 5.8 Optimal shell shapes by varying the fi lter radius size, with the ratio of interior to edge radii: (a) 11:3, (b) 7:3 and (c) 5:3

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


CHAPTER FIVE: COMPUTATIONAL FORM FINDING AND OPTIMIZATION   53

plan is fixed, and the thickness is held constant, partic-

ularly not allowing for thicker edge beams. Obviously, 

by simply playing with filters, a large variety of well-

known shapes can be generated: (a) the positively 

curved shell similar to Otto’s ‘Segelschalen’, (b) the 

negatively curved edges, well known from many of 

Isler’s shells, and (c) the Candela-type, hypar-like 

solution. What is shown here was already obtained 

by the first few runs in the shortest possible time and 

serves as a basis for further optimization; for example, 

to improve the aesthetic quality. In turn, the example 

may give an impression about how design philoso-

phies can be understood as tools to pre-filter the 

design space and how they affect the optimal result.

5.4.3 Isogeometric analysis

Usually, geometry is defined in a Computer-Aided 

Design (CAD) environment; for example, using 

Non-Uniform Rational Basis Splines (NURBS) as 

parameterization for the subsequent design. The 

geometric data are transferred afterwards to the 

analysts who transform the CAD model into an FE 

model. The FE parameterization is invoked for both 

the geometry and the mechanics. Typically, isopara-

metric finite elements with Lagrangian interpolation 

are applied. Isoparametric elements use so-called 

shape functions to represent both (‘iso’ means equal) 

the element geometry and the unknowns, typically the 

displacements (see also Appendix A).

More recently, so-called IsoGeometric Analysis 

(IGA) has been introduced (see for example Cottrell 

et al., 2009), where the analysis part also uses B-spline 

and NURBS parameterization. The advantage is, first 

of all, a consistent concept for both parts of the design. 

But, the NURBS representation also has a couple of 

advantages for the analysis part; for example, having 

a higher continuity between elements for the same 

order compared to the Lagrangian parameterization.

In the context of the design of shell structures, the 

IGA approach can be looked upon as a generalization 

of both concepts discussed above, using either coarse 

design patches or directly a fine finite element mesh 

for design. NURBS allow what is called knot-insertion 

to generate series of geometrically identical levels of 

refined meshes. Typically, the finest mesh is used as 

the analysis model whereas any of the meshes might 

be used as the geometrical model for shape optimi-

zation. It has to be noted though, that, by choosing 

one specific optimization model, the design space will 

be limited. A certain design filter will thus implicitly 

be applied.

The procedure is explained for a cylindrical shell 

under two opposite concentrated loads (Fig. 5.9). 

For the geometry of a cylinder with a circular cross 

section, a simple CAD model based on a NURBS 

representation with only a few parameters is suffi-

cient, as shown on the left side of Figure 5.9. Based 

on this exact geometry, a NURBS refinement is 

necessary to discretize the shell for the mechanical 

CAD model

design freedom

coarse

optimization model

fine
analysis model

Figure 5.9 Isogeometric shape optimization for minimization of strain energy (Kiendl, 2011)
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model, as indicated on the right side. Linear elastic 

material behaviour is assumed. In the following step, 

the shape of the structure is optimized with respect 

to minimizing the strain energy, which is equivalent 

to maximizing the stiffness. Now, the designer has 

an almost infinite design freedom, depending on 

how many parameters are inserted in the NURBS 

parameterized model to create the geometric model 

for shape optimization. Two options are indicated 

in the middle of Figure 5.9. The coarse optimization 

model in the upper part leads to a shape with two 

large bulges, increasing the curvature under the two 

loads. This case could be identified with the approach 

of applying design patches as described earlier. The 

optimization model in the lower part uses a very 

fine geometrical model, used for shape optimization, 

allowing a much more refined new shape, resulting 

in a thin ring stiffener. In the extreme case, the fine 

mesh of the analysis model can be used for the shape 

optimization as an FE-based parameterization, as 

mentioned above. In general, the density of the 

geometry may furthermore vary in different regions 

of the structure, which essentially replaces the filter 

described above by avoiding too much geometrical 

noise.

As has been mentioned already, optimization has 

the tendency to produce structures that are highly 

imperfection-sensitive. In order to avoid this critical 

situation, potential imperfections have to be included 

in the optimization process, that is, the imperfect shell 

has to be optimized; for example, by maximizing the 

failure load.

5.5 Conclusion

Ideal shells are optimized structures that can be 

extremely sensitive to imperfections, if not properly 

designed. This means that their shape has to be 

carefully adapted to the underlying design constraints. 

In other words, form finding is of utmost importance. 

This chapter discussed several methods, where the first 

one was based on the mechanical principle of inverting 

a hanging membrane. This can be verified either by a 

physical experiment or a corresponding numerical 

simulation based on large deformation analysis. A 

further, more general concept was shape optimization 

as a subset of overall structural optimization. Three 

different approaches to parameterize the geometry 

have been described. No matter which method is 

applied, it is important to have efficient means to 

control the design space. Ideally, they are implemented 

such that they are able to support the designer’s 

intuition. The designer should always be aware that 

every detail of the design process affects the result as 

a design filter.

Experimental form-finding methods and, to a 

limited extent, also their computer simulation have 

the big advantage of being vivid and ‘real’. They are 

ideally suited to preliminary design. Shape optimiza-

tions are much more general, but at the same time 

more abstract and sophisticated, and they need a basic 

design for the initial definition of the optimization 

problem. If the problem is properly defined, they have 

great potential.

This classification suggests a combination: hanging 

membranes as a means for the conceptual design 

stage, and shape optimization for its variation and 

refinement. However, despite a lot of progress in 

recent years, one must say that a magical toolbox 

does not exist. There is still enough room for design 

freedom and creativity.

Further reading

‘Shape finding of concrete shell roofs’, Ramm 

(2004). This paper discusses physical modelling in 

more detail and has been partially reproduced as 

part of this chapter with kind permission of the 

IASS.

‘Form finding and morphogenesis’, Bletzinger 

(2011). This article was published in the book Fifty 

Years of Progress for Shell and Spatial Structures, and 

includes discussions on minimal surfaces, tension 

structures and topology optimization. It has also 

been partially reproduced as part of this text with 

kind permission of the IASS.

‘Heinz Isler Shells – the priority of form’, Ramm 

(2011). This paper discusses the three form-finding 

methods employed by Heinz Isler, also in the light 

of computational models.

‘Regularization of shape optimization problems 

using FE-based parametrization’, Firl et al. (2012). 

This journal paper explains a fully stabilized formu-

lation for shape optimization problems, featuring 
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several examples and proposing the filter radius as 

a means to control design.

Isogeometric Analysis: Toward integration of CAD 

and FEA, Cottrell et al. (2009). This seminal book 

on IGA explains core concepts of this method as it 

has been applied to many types of problems.

‘Isogeometric analysis and shape optimal design 

of shell structures’, Kiendl (2011). This doctoral 

dissertation demonstrates the first comprehensive 

application of IGA to the problem of shell 

structures.
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CHAPTER SIX

Force density method
Design of a timber shell

Klaus Linkwitz

The brief

To expand its sports offerings, the municipality of 

Stuttgart is developing a new sports complex, which 

includes a swimming pool and an ice rink (Fig. 6.1). 

Each has to be covered independently to maintain a 

hot and a cold climate. Both structures are adjacent 

in order to exchange heat between their heating 

and cooling installations. For convenient access, both 

facilities share a central entrance. The Olympic-size 

swimming pool (25m × 50m) will be naturally venti-

lated. For this reason, a high-point roof is envisioned, 

LEARNING OBJECTIVES

Derive the static equilibrium equations of a 
single node, with four bar forces and a load 
applied to it.
Explain the consequences of introducing force 
densities into those equations.
Apply matrix algebra and branch-node 
matrices to generalize this single-node formu-
lation to arbitrary networks.
Use the force density method to generate the 
shape for a shell based on such a network.

The use of ‘force densities’ presents an approach for 

the rapid generation of feasible shapes for prestressed 

and (inverted) hanging structures. This method allows, 

especially in the early stages of a new project, the 

instant exploration of large numbers of alternative, 

feasible solutions.

This chapter explains the basic premise and appli-

cation of the Force Density Method (FDM), also 

known as the ‘(Stuttgart) direct approach’. It has been 

applied to the design of many built structures, particu-

larly to tensioned roofs, but also to the timber shell 

roofs of the 1974 Mannheim Multihalle (see page 

58) and the 1987 Solemar Therme in Bad Dürrheim, 

discussed in further detail in Chapter 12.

(b)

(a)

Figure 6.1 Outline for sports complex with (a) an 
Olympic-size swimming pool (25m × 50m) and (b) a 
standard-size hockey rink (30m × 60m)
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creating a stack effect. The controlled climate for the 

standard-size hockey rink (30m × 60m) is maintained 

by a domed enclosure. The client wishes to use locally 

sourced timber for the main structure, so a timber 

gridshell is proposed as the structural system.

6.1 Equilibrium shapes

As part of the conceptual design of structures, 

especially domes, shells and membrane structures, 

generating an adequate structural shape is crucial to 

the load-bearing behaviour and aesthetic expression 

of the design. Their shapes cannot be freely chosen 

and conceived directly, due to the intrinsic interaction 

between form and forces. For such a problem one 

needs form finding. Typical structural systems that 

require form finding include:

soap films within a given boundary;

prestressed, or hanging fabric membranes;

prestressed, or hanging cable nets;

structures generated by pressure (e.g. air, water).

Membranes or cable nets can be used for the design 

of shell structures such as thin gridshells, but are only 

partially valid as the constituting elements are not 

necessarily free from bending.

For these types of structures, the force density 

method has proven an invaluable approach to generate 

equilibrium solutions, and thus feasible shapes for 

potential designs. Solutions are generated from simple 

linear systems of equations.

Another advantage of using force densities is 

that they do not require any information about the 

material for the later realization of the design. As we 

are dealing with non-materialized equilibrium shapes, 

no limitations with respect to material laws exist. The 

materialization follows in a second step. When intro-

ducing material, we may choose (independently for 

each bar in the net) the material, without changing 

the shape created with force densities.

6.2 A thought experiment

Looking at any prestressed, lightweight surface 

structure, we observe that the continuous surface is 

doubly curved at each point. In other words, when 

considering its discretization as a pin-jointed net, at 

each interior intersection point, two bars are curved 

downwards, or ‘standing’, and two curved upwards, or 

‘hanging’ (Fig. 6.2). This opposite curvature is called 

‘anticlastic’ or ‘negative’ curvature.

This characteristic doubly curved shape immedi-

ately becomes understandable in the following thought 

experiment. We put up four elastic rubber bands in a 

box. They will sag under their self-weight and assume 

the shape of catenaries (Fig. 6.3a). To stabilize these 

four hanging rubber bands, we place four new ones 

perpendicularly over them, connecting them at their 

intersections and attaching them to the bottom of the 

box (Fig. 6.3b). We now stabilize the net further by 

applying tension to the bands, by prestressing them. 

We pull the hanging bands by their ends, located at 

the sides of the box. Their initial lengths decrease, 

and as they are lifted up, they pull the net upwards 

(Fig. 6.3c). We continue by alternately pulling both 

sets of four elastic bands, as the geometry of the net 

changes less and less (Fig. 6.3d). Meanwhile, the 

net itself becomes increasingly stiff, and anticlastic 

curvature results at every point. Precisely this principle 

is applied everywhere in a prestressed, structural net.

6.2.1 A single node in equilibrium

The thought experiment in Section 6.2 can be further 

simplified. The stationary, prestressed net is charac-

terized by the fact that at every node equilibrium must 

exist between the four cable-forces, induced by initial 

prestress, and any load acting on that node.

Let us consider such a single node P
0
 in equilibrium 

(Fig. 6.4). The node P
0
 is connected to fixed points 

Figure 6.2 A prestressed surface, when discretized shows 
at each interior point, two ‘hanging’ bars curved upwards, 
and two ‘standing’ downwards
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P
1
,P

2
,P

3
,P

4
 in three-dimensional space in an ‘anticlastic’ 

configuration, meaning that of the opposite pairs of 

points, P
1
,P

3
 must be ‘high’ and P

2
,P

4
 must be ‘low’ 

points, or vice versa.

The four elastic bars a,b,c,d between these points, 

are connected as pin-joints. In their slack state the four 

bars are too short to be connected at P
0
. Consequently, 

tension forces F
a
,F

b
,F

c
,F

d
 are generated when they are 

connected at P
0
. A fifth force, representing self-weight, 

is applied as an external load P
z
 at node P

0
.

6.2.2 Translation to equations

Now that we have modelled the prestressed net as a 

spatial, four-bar, pin-jointed network, the question is 

how to find a state of equilibrium and the resulting 

geometry. To this end, we first formulate three basic 

relationships:

1. Every individual bar is increased in length due 

to the tension force acting in it. The difference 

between the non-stretched and elastically stretched 

length of the bar results from material behaviour.

2. In the prestressed state of the net, every length of 

an elastically extended bar has to be equal to the 

distance of the nodes to which it is connected. This 

describes the compatibility between the elongation 

of the bars and the geometry of the net in the final, 

prestressed state.

3. The tension forces and self-weight applied to the 

unsupported node must be in equilibrium.

If we translate these three basic facts to mathematical 

formulae, we obtain the following relationships, for a 

single node and its four neighbours.

First, Hooke’s law of elasticity applies without loss 

of generality to the changes in length. The tension 

force F
i
, with i = a,b,c,d, in each of the four bars is

 F
i
 =   [   EA ___ 

l
0

    e ]  
i

 . (6.1)

where EA is the (axial) stiffness of the material, l
0
 is 

the non-stretched length, and e the elastic elongation 

of the bar.

Second, the length l
i
 of every elastically elongated 

bar must be exactly equal to the spatial distance 

between the nodes at its ends

 l
i
 =  √

_____________________
   (x

k
 − x

0
)2 + (y

k
 − y

0
)2 + (z

k
 − z

0
)2  , (6.2)

where x,y,z are the coordinates of the nodes, and 

k = 1,2,3,4.

The elastic elongation e is the difference of stretched 

and non-stretched lengths l and l
0
, so by substituting 

l with equation (6.2), the elongation of each of the 

four bars

 e
i
 = l

i
 − l

0,i
. (6.3)

Third and last, there must be equilibrium in every 

node. This must also hold in each of the three dimen-

sions, x, y and z. We decompose the force F
i
 in each 

(a) (b) (c) (d)

Figure 6.3 A thought experiment resulting from (a) four hanging, (b) four standing rubber bands and alternately (c, d) 
tensioning them

P
1

a

b

c

d

P
2

P
3

P
4

P
0

p
z

Figure 6.4 A single node with four forces and a load
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bar into three components, which for example in 

x-direction, gives

 F
i,x

 = F
i
  cos 

i
, (6.4)

where cos 
i
 is the direction cosine, and 

i
 is the angle 

between bar i and the x-direction. The equilibrium of 

the four forces in point P
0
 in the x-direction, with a 

load p
x
 acting on the node, is

 F
a
  cos 

a
 + … + F

d
  cos 

d
 + p

x
 = 0. (6.5)

Writing the direction cosine between points P
k
 and P

0
 

with reference to the three coordinate axes results in 

the expression

direction cos =   coordinate difference  __________________  
distance in space

  

and substituted as an equation in (6.5) gives

   
x

1
 − x

0 ______ 
l
a

    F
a
 + … +   

x
4
 − x

0 ______ 
l
d

    F
d
 + p

x
 = 0. (6.6)

In structural mechanics, the following relationships 

apply:

Static equilibrium requires the formulation of 

equilibrium equations, which relate external loads 

and internal forces. In our case, they relate load p 

to forces F
i
 in equation (6.6).

Material behaviour is determined by constitutive 

equations relating the internal forces to deforma-

tions (more generally, strain) such as elongations 

and/or curvatures. In this case, Hooke’s law of 

elasticity (without loss of generality) describes the 

material relationship (6.1) between forces F
i
 and 

elongations e
i
.

Geometry is governed by the compatibility or 

kinematic equations, relating the deformations to 

translations.

In order to find a solvable system of equations from 

(6.1–6.6), we carry out a number of substitutions.

First, by substituting equation (6.3) into (6.1), we 

can write

 F
i
 =   [   EA ___ 

l
0

  (l − l
0
) ]  

i

 . (6.7)

We insert these expressions for the forces into the 

equilibrium equations (6.6), and get

  
x

1
 − x

0 ______ 
l
a

      
EA

a ____ 
l
0,a

  (l
a
 − l

0,a
) + …

  +   
x

4
 − x

0 ______ 
l
d

      
EA

d ____ 
l
0,d

  (l
d
 − l

0,d
) + p

x
 = 0. (6.8)

If the coordinates of the fixed points x
k
,y

k
,z

k
 and the 

unstressed lengths of the elastic bars l
0,a

,…,l
0,d

 are 

given, we are now able to determine the unknown 

coordinates x
0
,y

0
,z

0
 of point P

0
 and thus its position in 

three-dimensional space. We have to solve the system 

of the preceding equations for the unknown coordi-

nates x
0
,y

0
,z

0
. However, this is by no means trivial. 

The system to be solved is nonlinear as the unknown 

coordinates x
0
,y

0
,z

0
 are also contained in the lengths 

l
a
,…,l

d
 , in equation (6.2).

Thus, we have to linearize the system, observing 

that the system is nonlinear with respect to geometry 

and material.

6.2.3 Force densities

To deal with the nonlinearity of the problem, we 

introduce force densities, also known as ‘tension 

coefficients’. These are defined as

force density =   force in a bar  _____________________  
stressed length of the bar

  .

Quantities of this type can already be recognized 

in our previous equations, (6.6) and (6.8). To find 

the spatial coordinates of P
0
, we take the following 

approach to overcome the nonlinearity problem. First, 

we rewrite equation (6.6) to

 (x
1
 − x

0
)    

F
a __ 

l
a

   + … + (x
4
 − x

0
)    

F
d __ 

l
d

   + p
x
 = 0. (6.9)

The quotients F/l are declared as new variables q, 

called force densities, defined as

 q
i 
:=   

F
i __ 

l
i

   (6.10)

and equation (6.9) thus becomes

 (x
1
 − x

0
)  q

a
 + … + (x

4
 − x

0
)  q

d
 + p

x
 = 0. (6.11)
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Equation (6.11) is reordered in such a way, that the 

terms with the unknowns (i.e. the coordinates of 

P
0
) are on the left-hand side and the terms with the 

constant factors (i.e. the given values of the coordi-

nates of the fixed points and the force densities) are 

on the right-hand side of the equation. The resulting 

system of equations

− (q
a
 + q

b
 + q

c
 + q

d
)  x

0
 =

 − p
x
 − (x

1
  q

a
 + x

2
  q

b
 + x

3
  q

c
 + x

4
  q

d
) (6.12)

has the solution, now given in three dimensions,

x
0
 =   

p
x
 + x

1
  q

a
 + x

2
  q

b
 + x

3
  q

c
 + x

4
  q

d   ___________________________  q
a
 + q

b
 + q

c
 + q

d
  ,

 y
0
 =   

p
y
 + y

1
  q

a
 + y

2
  q

b
 + y

3
  q

c
 + y

4
  q

d
   __________________________  q

a
 + q

b
 + q

c
 + q

d
  , (6.13)

z
0
 =   

p
z
 + z

1
  q

a
 + z

2
  q

b
 + z

3
  q

c
 + z

4
  q

d   ___________________________  q
a
 + q

b
 + q

c
 + q

d
  .

For each chosen set of four force densities we get a 

unique solution of the unknown point P
0
(x

0
,y

0
,z

0
) 

from the linear system of equations (6.13). These 

unique solutions are equivalent and identical with the 

solutions of the nonlinear equations (6.6) and (6.8). 

Notice the equivalence of the equations (6.6) and 

(6.12), where the former is the nonlinear description, 

and the latter is the linear description, of the very 

same equilibrium solution.

6.3 Matrix formulations

So far, we have found a solution if we only have one 

unknown three-dimensional point in space. Practically, 

the solution for the single node is by no means suffi-

cient. We are dealing with nets with arbitrary topology 

and numbers of given fixed and unknown free points. 

To find solutions for arbitrarily large nets, we have to 

extend our mathematical tools, and introduce matrix 

formulations combined with graph theory. In the 

following sections we discuss some conventions in 

our notation, then introduce two specific concepts: 

the branch-node matrix and the Jacobian. Using these, 

we rewrite the single-node problem in matrix form, 

before generalizing to arbitrary networks.

6.4 Notation

A vector is interpreted as a one-column matrix and 

written in bold lower case, and a general matrix is 

written as a bold capital letter. The same symbols are 

used for the components but they have an additional 

index i, j or k. The m-dimensional vector a – called the 

m-vector a – has therefore a
j
 as j-th component. The 

transpose of a vector is a one-row matrix,

a = 

⎡ 1 ⎤
⎢ 2 ⎥
⎣ 3 ⎦

 = [1 2 3]T, aT = [1 2 3].

Further, we often need the diagonal matrix A 

belonging to any vector a : A is simply defined to have 

a as diagonal, for example

a = 

⎡ 1 ⎤
⎢ 2 ⎥
⎣ 3 ⎦

, A = diag(a) = 

⎡ 1 0 0 ⎤
⎢ 0 2 0 ⎥
⎣ 0 0 3 ⎦

.

6.4.1 Branch-node matrix

Before proceeding to generalize our equations for a 

single node to those for an arbitrary network, we discuss 

some fundamental concepts of graph theory that can 

be used to describe net-like entities and are therefore 

useful for such a general formulation. In graph theory, 

a net-like entity consists of an aggregation of n nodes 

(also called points) and an aggregation of m branches 

(also called edges). Each branch connects two nodes.

The topological relationships between nodes and 

branches can be described in graph theory by a 

branch-node matrix C (or incidence matrix CT), 

consisting of the elements +1, −1 or 0 in each row, so

C
ij
 = 

⎧+1 if branch j ends in node i,

⎨−1 if branch j begins in node i,

⎩0 otherwise.

A few remarks characterizing the branch-node matrix 

C:

C does not contain ‘geometry’, only topology, that 

is, there are no metric relationships;

there is precisely one element +1 and one element 

−1 in each row;

the matrix is not necessarily regular with respect to 
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its columns, that is, it can have a different number 

of elements in each column;

in the case of a contiguous net, C has the rank m − 1.

Now we are able to treat our ‘single-node problem’ 

using the corresponding branch-node matrix. The 

branch-node matrix C of the point  P 
0
  with its neigh-

bours  P 
1
 ,…, P 

4
  is

 C = 

 P
0
 P

1 
P

2 
P

3 
P

4

⎡ +1 −1 0 0 0 ⎤ a

⎢ +1 0 −1 0 0 ⎥ b.

⎢ +1 0 0 −1 0 ⎥ c

⎣ +1 0 0 0 −1 ⎦ d

 (6.14)

The usefulness of C can be demonstrated by noting 

that the coordinate differences,

 u = [x
1
 − x

0
  x

2
 − x

0
  x

3
 − x

0
  x

4
 − x

0
]T, (6.15)

are obtained through the multiplication of the 

coordinate vectors

 x = [x
0
  x

1
  x

2
  x

3
  x

4
] (6.16)

with the branch-node matrix C, such that

 u = Cx. (6.17)

We subdivide the branch-node matrix C into the part  

C 
N
  containing the new, unknown points, and the part  

C 
F
  containing the fixed points, so

 C = [C
N
  C

F
] (6.18)

and in a similar manner we subdivide the vector of 

coordinates x into new, unknown points and fixed 

points, so

 x = [x
N
  x

F
] (6.19)

Substituting equations (6.18) and (6.19) into (6.16), 

and similarly for the y- and z-direction, we get

 u = C
N

x
N
 + C

F
x

F
,

 v = C
N

y
N
 + C

F
y

F
, (6.20)

 w = C
N

z
N
 + C

F
z

F
,

and using their diagonal matrices U, V, and W the 

corresponding bar lengths

 L = ( U 2  +  V  2   + W 2  ) 
  1 __ 
2
  
 . (6.21)

Declaring force densities and bar lengths as vectors 

q and l, or as diagonal matrices Q and L, we have 

everything at our disposal that allows us to solve the 

‘single-node problem’ automatically.

6.4.2 Jacobian

To write the equations (6.6) and (6.8) in matrix 

notation, we also determine the gradient  in 

Euclidean space, or the Jacobian ∂f( x 
0
 )/∂ x 

0
 , of the 

function

 f( x 
0
 ) = 

⎡ f
a
(x

0
) ⎤

⎢ f
b
(x

0
) ⎥

⎢ f
c
(x

0
) ⎥

⎣ f
d
(x

0
) ⎦

 = 

⎡ l
a
 ⎤

⎢ l
b
 ⎥

⎢ l
c
 ⎥

⎣ l
d
 ⎦  

= l. (6.22)

As a result, we get for the transposed Jacobian

  (   ∂f( x 
0
 )
 ____ 

∂ x 
0
 
   )  T =  [   ∂ l 

a
 
 ___ 

∂ x 
0
 
     

∂ l 
b
 
 ___ 

∂ x 
0
 
     

∂ l 
c
 
 ___ 

∂ x 
0
 
     

∂ l 
d
 
 ___ 

∂ x 
0
 
   ]  = 

⎡
⎢
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣

  
 −  (  x 

1
  −  x 

0
  ) 
 ________ 

 l 
a
 
  

  
 −  (  x 

2
  −  x 

0
  ) 
 ________ 

 l 
b
 
  

  
 −  (  x 

3
  −  x 

0
  ) 
 ________ 

 l 
c
 
  

  
 −  (  x 

4
  −  x 

0
  ) 
 ________ 

 l 
d
 
  

⎤
⎥
⎥ 
⎥ 
⎥ 
⎥ 
⎥
⎦

T

. (6.23)

Using the branch-node matrix, we can write the 

Jacobian

   (   ∂f(x)
 ____ 

∂x
   )  T = C  

N
  T
  U L −1 . (6.24)

The Jacobian corresponds exactly to the direction 

cosines of equation (6.6).

6.4.3 Solution in matrix form

Introducing the vector of forces f and the vector of 

load components p, equation (6.6) is then equivalent to
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 −   (   ∂f( x 
0
 )
 ____ 

∂ x 
0
 
   )  T 

⎡ F
a
 ⎤

⎢ F
b
 ⎥

⎢ F
c
 ⎥

⎣ F
d
 ⎦ 

+  p 
x
  = 0. (6.25)

This equation can be written as

  C  
N
  T
  U L −1 f + p = 0. (6.26)

With the definition for the force densities known 

already from equation (6.10),

 q =  L −1 f, (6.27)

we receive, by substitution, the system of equations

  C  
N
  T
  Uq + p = 0. (6.28)

We want to find the linear system of equations 

for the determination of the solution. Given that 

Uq = Qu = QCx, we rewrite equation (6.28) to 

equations of the form

  C  
N
  T
  QCx + p = 0 (6.29)

or

  C  
N
  T
  Q C 

N
  x 

N
  +  C  

N
  T
  Q C 

F
  x 

F
  + p = 0. (6.30)

We observe the independence of the equations for the 

respective coordinate components. For simplicity, we 

set  D 
N
  =  C  

N
  T
  Q C 

N
  and  D 

F
  =  C  

N
  T
  Q C 

F
 , and obtain the 

system of equations of equilibrium in the form

  D 
N

  x 
N
  = p −  D 

F
  x 

F
 , (6.31)

which is a system of linear equations of the standard 

form Ax = b. This equation linearly defines the free 

node coordinates  x 
N
 . This system can be solved 

efficiently by using, for example, Cholesky decom-

position (see Section 13.5.1). With a given load and 

a given position of fixed points, we get for each set 

of prescribed force densities exactly one equilibrium 

state with the shape, now given in three dimensions,

 x 
N
 = D  

N
  −1 ( p 

x
  −  D 

F
  x 

F
 ),

  y 
N
 = D  

N
  −1 ( p 

y
  −  D 

F
  y 

F
 ), (6.32)

 z 
N
 = D  

N
  −1 ( p 

z
  −  D 

F
  z 

F
 ),

and the branch forces

 f = Lq. (6.33)

6.4.4 Generalization

We can generalize the solution in equation (6.32) for 

arbitrarily large nets of m branches and n =  n 
N
  +  n 

F
  

nodes, consisting of  n 
N
  unknown, new nodes, and  n 

F
  

fixed nodes. Previously, we had only m = 4 branches and 

n =  n 
N
  +  n 

F
  = 1 + 4 nodes. So long as the m × n branch-

node matrix C correctly describes the topology of our 

network, and consistent indexes are used for all the 

matrices and vectors describing properties of branches 

and nodes, equation (6.32) holds for any problem. 

We apply the same equation to another topology, 

belonging to that of the net drawn in Figure 6.5.

P
2

Figure 6.5 An arbitrary net with a large number of nodes 
and branches

The example, without external loads, for force 

densities varying in the edges and in the interior of 

the net, and the boundary conditions shown in Figure 

6.5, leads to the solutions in Figure 6.6. Here the ratio 

of force densities in the edge to the interior branches 

is varied from 5:1, 2:1, 1:1 to 1:2, suggesting possible 

shapes for anticlastic surfaces. When vertical loads are 

introduced to Figure 6.7a in the range  p 
z
  = 0.1,0.2,0.5, 

and the boundary edges are either free or fixed, it 

yields different, synclastic shapes shown in Figure 

6.7b–d.

6.5 Materialization

A net has been determined with ‘pure’ force densities, 

without any information about the material used for 

its realization. Subsequently, any materialization of 

each and every individual bar is possible.
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We know the forces from equation (6.33), where 

the force densities q are given, and the lengths are 

calculated for each bar from equation (6.3) using the 

appropriate coordinates.

Then, selecting a diagonal matrix of axial stiff-

nesses EA, we can calculate the corresponding vectors 

of elastic elongations e and initial lengths  l 
0
 . The 

principle here is to select the initial lengths  l 
0
  in such 

a manner that the elongations e = l −  l 
0
 , that is, the 

elongation which is necessary to generate the solution. 

According to Hooke’s law of elasticity, rewritten and 

generalized from equation (6.1),

e = l −  l 
0
  =  L 

0
 (EA ) −1 f

 =  L 
0
 (EA ) −1 Lq, (6.34)

 q = eEA L  
0
  −1  L −1 . (6.35)

Continuing to rewrite equation (6.34)

 l =  l 
0
  +  L 

0
 (EA ) −1 f

 =  ( I + (EA ) −1 F )  l 
0
 , (6.36)

  l 
0
  =   ( I + (EA ) −1 F )  −1 l

 =   ( I + (EA ) −1 QL )  −1 l, (6.37)

where I is an identity matrix of size m.

As long as each force F is larger than zero, the 

denominator of the fraction is always >1 and therefore 

we have tension in the bar if  l 
0
  < l and, vice versa, 

compression. Furthermore, the initial length  l 
0
  of the 

bar, or cable segment, necessary to realize a given 

equilibrium shape, is only dependent on the chosen, 

individual axial stiffness EA.

6.6 Procedure

The steps in the force density method (Fig. 6.8) are 

simply constructing the right-hand side of equation 

(6.32), which consists of the boundary conditions, 

or fixed points  x 
F
 , the topology described by C, the 

force densities q and external loads p. If the resulting 

solution, described by the coordinates x = [ x 
N

   x 
F
 ], is 

unsatisfactory to the designer, each of these four 

quantities can be changed to generate a new, unique 

solution.

The loads could also be calculated from the 

surface area or bar lengths surrounding each node, to 

approximate self-weight of the structure. For discrete 

structures, this is done using equation (10.28), while 

for continuous surfaces, approaches such as those 

adopted in Chapters 7, 13 and 14 can be used.

The effect of particular sets of force densities q 

on the resulting equilibrium shapes may be difficult 

to anticipate. Their value can also be determined 

indirectly: either by the user controlling the horizontal 

thrust components as in thrust network analysis 

(Chapter 7), or by adding constraints to form a least-

squares problem (Chapters 12 and 13).

6.7 Design development

The roof of the ice rink is designed as a synclastic 

surface structure by applying vertical loads p. Starting 

from a quadrilateral topology, Figure 6.9 shows some 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 6.6 Figures of equilibrium for varying proportions 
of edge to interior force densities, (a) 5:1, (b) 2:1, (c) 1:1 and 
(d) 1:2

Figure 6.7 Figures of equilibrium for varying loads (a)  p z  = 0, 
(b)  p z  = 0.1, (c)  p z  = 0.2 and (d)  p z  = 0.2 with fixed, straight 
edges

(a)

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


CHAPTER SIX: FORCE DENSITY METHOD   67

design possibilities by varying the loads p and the 

force densities q. Because both these parameters are 

given by the designer, and because their relation (6.28) 

is linear, one can obtain the same geometry, by scaling 

both parameters equally. For example, the solution 

in Figure 6.9a with q = 2 and p = 0.5 also results by 

scaling the loads and force densities by a factor 2, so 

with q = 4 and p = 1. In other words, once the geometry 

is found, one can calculate the real load afterwards and 

simply scale the force densities accordingly to obtain 

actual forces in the structure.

Figure 6.10 shows a few variations for the swimming 

pool roof, obtained by changing the boundary condi-

tions (the height and size of the opening in the 

middle), and by adding point loads to the nodes 

in Figure 6.10c. The initial topology is radial, with 

its origin in the centre of the high point. Without 

providing a load, the resulting forms are anticlastic. 

The design team settles on the geometries shown in 

Figures 6.9 and 6.10b for the initial design of the 

sports complex, shown in Figure 6.11. This design can 

be materialized and then tested for other load combi-

nations. However, the project may have additional 

architectural or structural constraints, ultimately 

expressed in the form of specific positions of nodes, 

target lengths of branches or values of forces. These 

constraints lead to a nonlinear FDM, as explained 

further in Chapter 12.

No

START

update

update

update

update

Define boundary conditions x 
N

Define typology C

Input force densities Q

Input or calculate loads p

Solve for x
F

Design satisfactory?

Choose stiffnesses EA
or initial lengths L

0

Materialize by computing
unknown EA or L

0

END

Figure 6.8 Flowchart for FDM

(a) (b) (c)

Figure 6.9 Variations for the ice rink roof with (a) q = 2, p = 0.5, (b) q = 2, p = 1, and (c) q = 1, p = 1

(a) (b) (c)

Figure 6.10 Variations for the swimming pool roof with q = 1 for (a) high point h = 12m, small opening, (b) h = 10m, large 
opening and (c) h = 6m, large opening and p = 1
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6.8 Conclusion

The force density method is able to generate solutions 

of discrete networks, through linear systems of 

equations, that are in an exact state of equilibrium, 

without needing iterations or some kind of conver-

gence criterion. Applied to the design brief, it enabled 

us to quickly generate solutions for a given topology, 

by varying the force densities and external loads. The 

method, originally developed for cable nets, is, to this 

day, very common in the design practice of tensioned 

membrane roofs. By introducing loads, it also allows 

the form finding of synclastic structures, highly 

suitable for efficient shell structures. Because the 

method is entirely independent of material properties, 

two interesting opportunities arise. First, resulting 

designs can be materialized arbitrarily, giving the 

initial lengths of the network in undeformed state, 

without affecting the final shape. Second, one can 

simply multiply the loads to any realistic value, and 

then calculate the internal force distribution, again 

without changing the geometry.

Key concepts and terms

The force density is the ratio of force over (stressed) 

length in a bar or cable segment. It is also known as 

the ‘tension coefficient’.

A branch-node matrix is a matrix that shows the 

(topological) relationship between m branches and 

n nodes. The matrix has m rows and n columns. The 

entry in a certain row and column is 1 or -1 if the 

corresponding branch and node are related, and 0 if 

they are not. The sign depends on the direction of the 

branch. The transpose of the branch-node matrix is 

known as the incidence matrix.

The Jacobian is the gradient for functions in Euclidean 

space. It is the matrix of all first-order partial derivatives 

of a vector- or scalar-valued function with respect to 

another vector. In other words, the variation in space of 

any quantity can be represented by a slope. The gradient 

represents the steepness and direction of that slope.

Further reading

‘Einige bemerkungen zur Berechnung von vorge-

spannten Seilnetzkonstruktionen or Some remarks 

on the calculation of prestressed cable-net struc-

tures’, Linkwitz and Schek (1971). This German 

journal publication laid all the groundwork for 

what later would be called force densities and the 

force density method.

‘The force density method for form finding and 

computation of general networks’, Schek (1974). 

This seminal paper by Hans-Jörg Schek concisely 

describes the force density method and explains 

how constraints can be introduced.

‘Formfinding by the “direct approach” and pertinent 

strategies for the conceptual design of prestressed 

and hanging structures’, Linkwitz (1999). This 

journal paper explains the force density method 

and also linearizes the nonlinear, materialized 

equations for static analysis. This shows, indirectly, 

how the force density method relates to static 

analysis.

Exercises

Four points,  P 
1
 (0,0,0),  P 

2
 (5,0,3),  P 

3
 (0,7,3) 

and  P 
4
 (7,5,0) are connected to a central node  P 

0
  

through links a, b, c and d. Each link has a force 

of 1kN. When a gravity load p = 5kN is applied, 

determine the position of node  P 
0
 . Calculate the 

sum of forces in node  P 
0
 . What do you observe?

Now, determine the position of node  P 
0
  once more, 

except by imposing force densities q = 1 in the four 

bars, instead of forces. What is the sum of forces 

in node  P 
0
 ? What happens if the force density q = 2 

in bars b and d?

Compose a branch-node matrix for the standard 

example grid in Figure 6.12 and assemble the 

vectors of force densities q and coordinates x,y,z.

Figure 6.11 Preliminary design for the Stuttgart sports 
complex
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Change the boundary conditions (vertical position 

of anchor points  z 
F
 ), force densities q and external 

loads  p 
z
 , to shape a shell structure.

10m

10m

Figure 6.12 Standard grid
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CHAPTER SEVEN

Thrust network analysis
Design of a cut-stone masonry vault

Philippe Block, Lorenz Lachauer and Matthias Rippmann

The method presented in this chapter, Thrust Network 

Analysis (TNA), is appropriate for the form finding of 

compressive funicular shells, thus particularly for any 

type of vaulted system in unreinforced masonry. For 

example, based on TNA but using tile vaulting instead 

of cut-stone, a full-scale prototype of a ‘freeform’ 

funicular shell has been built on the ETH campus in 

2011 (see page 70 and Figure 7.1). Figure 7.2 shows 

the form and force diagrams and thrust network of 

the structure. The colours represent the magnitude 

of thrust under self-weight in the network’s branches.

LEARNING OBJECTIVES

Discuss the basic principles of equilibrium 
analysis for masonry.
Relate the key concepts of thrust network 
analysis to graphic statics and reciprocal 
diagrams.
Implement a simple thrust network analysis 
solver using linear algebra.
Generate funicular shells through explicit 
control of form and internal force distribution.

PREREQUISITES

Chapter 6 on the force density method.

The brief

We have been asked to design a pavilion for a park in 

Austin, TX, USA, that will cover the stage and seating 

of a performance area of 20m × 15m, providing shade 

to audience and performers.

To design a lasting landmark, we proposed an 

unreinforced, cut-stone vaulted structure. Using the 

locally quarried ‘Texas Cream’, a soft limestone, the 

pavilion would blend into its surroundings. Many 

important buildings in Austin, such as the State 

Capitol, have been built with this beige-coloured 

stone. The pavilion structure stands out from the other 

buildings though because of its structural use of stone 

instead of mere cladding.

Because Austin, at the heart of Texas, has a 

very low chance of earthquakes, we can convinc-

ingly propose the safe design of an unreinforced 

stone structure, and a 500-year design life can be 

guaranteed for the structure, due to the omittance of 

reinforcement steel.

7.1 Funicular structures and masonry 
vaults

This section introduces the main concepts, methods, 

and terminology related to the structural design and 

analysis of masonry structures.
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7.1.1 Hanging models

Before the existence of structural theory, the ancient 

master builders used design methods for masonry 

structures based on rules  of proportion and geometry. 

Th e fi rst scientifi c understanding of the stability of 

unreinforced masonry structures was formulated in 

1676 by the English scientist Robert Hooke, in the 

form  of the inverted hanging chain: Hooke’s law 

of inversion (see Section 1.1). Note that this is of 

course only considering static equilibrium, and not, for 

example, instability, such as buckling.

Weights, proportional to the self-weight of each 

stone piece (voussoir), of an arch (Fig. 7.3a) are 

applied on the vertical lines of action through their 

centroids, to a hanging string (Fig. 7.3b). When 

inverted, it produces a thrust line that fi ts within the 

arch’s geometry (Fig. 7.3a). Th is compression funicular 

can be used to show a possible compression-only 

equilibrium of the arch.

7.1.2 Graphic statics

For two-dimensional problems, graphics statics can be 

used instead of a hanging model. It allows fi nding the 

form of possible funicular shapes for given loads, but 

at the same time also the magnitude of the forces in 

them. Th e geometry of the structure, represented here 

by the funicular polygon, is named the form d iagram 

(Fig. 7.3a). Th e magnitude of force in each element 

of the form diagram is simply known by measuring 

the length of the corresponding, parallel element in 

the force diagram, which is drawn to scale (Fig. 7.3c). 

Figure 7.1 Tile vault prototype at ETH Zurich, Switzerland, 
2011

5.63

4.37

3.736.39

1.57

3.29 5.20

1.46

4.9

5.63

4.37

3.74

2.2

6.39

1.57

3.29

5.21

1.46

4.9

5.0 kN2.5 kN0 kN

(a)

(b)

(c)

force (kN)

6.390.0 3.20

Figure 7.2 (a) Force network in plan, (b) corresponding reciprocal force diagram and (c) compression-only thrust network
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The geometrical and topological relationship between 

form and force diagram is called reciprocal (Section 

7.2.2). An important additional aspect of the force 

diagram is that it shows both global and local force 

vector equilibrium of the force in the funicular line 

(Fig. 7.3c–d).

A particular quality of graphic statics is its bi-direc-

tional nature, meaning that the form can drive the 

forces and vice versa. So, if constraints are imposed on 

the form, such as maximum depth of the structure or 

given points for the structure to go through, then the 

forces have to follow; if constraints are imposed on 

the forces such as upper bounds on the thrust values, 

then the resulting form will emerge. Controlling 

either form or force diagram thus allows an informed 

design exploration. Unfortunately, graphic statics is 

practically limited to two-dimensional problems. In 

contrast, physical hanging models allow the ‘analogue 

computing’ of equilibrium shapes of fully three-

dimensional networks, although force information of 

the resulting networks needs to be obtained separately.

7.1.3 Thrust line analysis and the safe theorem

Graphic statics can be used to generate thrust lines, 

which, when fitted within the masonry structure, 

visualize possible compressive ‘flow of forces’ through 

the structure.

Jacques Heyman formulated the lower-bound (or 

safe) theorem for masonry, which states that an unrein-

forced masonry structure is safe for a specific loading 

case as long as one compressive solution can be found 

that equilibrates those loads and fits within the struc-

ture’s cross section. Assumed is that the interfaces 

between the voussoirs (i.e. masonry blocks) provide 

enough friction or interlocking to avoid sliding failure, 

and that crushing does not occur (typical historic 

masonry has stress levels two orders of magnitude 

smaller than the compressive strength of stone). Most 

historic masonry structures rely on their thickness 

to resist live loads, hence combining two stabilizing 

effects: first, a high self-weight reduces the influence 

of asymmetric live loading on the resulting thrust line; 

and second, a large structural depth allows the thrust 
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Figure 7.3 A masonry arch of arbitrary geometry with (a) thrust line and (b) corresponding hanging string, (c) the force 
diagram, showing (d) the equilibrium of one stone block
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lines to fit, changing under non-funicular load cases, 

within the structure’s geometry. An important obser-

vation is that a range of possible and admissible thrust 

lines can be found within the section of a masonry 

structure; these are all possible equilibrium states in 

which the vaulted structure could stand.

Ideally, thrust lines should be kept within the 

kern (i.e. the middle-third zone) of the masonry 

section: as the thrust line visualizes the resultant of 

the compressive stresses throughout the structure, this 

means that the entire breadth b of the cross section is 

then effectively in compression (Fig. 7.4). Theoretically, 

a resultant force in the middle of the section repre-

sents uniform compressive stresses over the entire 

breadth of the section (Fig. 7.4a), while a resultant 

force applied at the middle third of the section corre-

sponds to a triangular distribution of compressive 

stresses, still engaging the entire section (Fig. 7.4b). 

Going outside the middle third would result in ‘tensile’ 

stresses, which cannot exist as the masonry structure 

is unreinforced; the effective breadth  b′  of the section 

is therefore reduced (Fig. 7.4c). When designing a 

new masonry construction, the central ‘axis’ of the 

structure thus wants to follow the thrust line under its 

dominant loading condition, the dead load, typically 

its self-weight, as close as possible.

a representation of one possible static equilibrium in 

compression under a given set of loads. Based on the 

safe theorem, it is sufficient to show that one state 

of equilibrium exists that fits within the geometry of 

the masonry vault to guarantee the vault’s stability 

for that loading case. Buckling, deflection, sliding or 

other (asymmetric) loading combinations have to be 

checked separately after the form-finding process.

TNA allows for the intuitive design of funicular 

networks with a high level of control due to the 

following key concepts:

vertical loads constraint (Section 7.2.1);

reciprocal diagrams (Section 7.2.2);

statically indeterminate networks (Section 7.2.3).

7.2.1 Vertical loads constraint

Since only vertical loads are considered in TNA, 

the equilibrium of the horizontal force components 

(thrusts) in the thrust network can be computed 

independently of the chosen external loading. This 

allows splitting the form-finding process in two steps: 

solving for an equilibrium of the horizontal thrusts 

first, and then solving for the heights of the nodes of 

the thrust network, based on the external vertical loads, 

the given boundary conditions, and the obtained 

horizontal equilibrium.

Figure 7.5a shows the relationship between the 

form diagram , which is the horizontal projection of 

the funicular equilibrium solution, the thrust network 

G, and the force diagram   * , which is the recip-

rocal diagram of . When referring to elements or 

properties of the reciprocal, an asterisk symbol (*) will 

be used.

7.2.2 Reciprocal diagrams

The in-plane equilibrium of , and thus also the 

horizontal equilibrium of G, can be computed 

explicitly using its reciprocal force diagram   * .

Since the diagram  is planar, methods from 

graphic statics allow for the finding of an equilibrium 

state. Considering  as form diagram, each force 

distribution is represented by a force diagram   * , up to 

a given scale. Form and force diagrams are related by 

a reciprocal relationship. This means that  and   *  are 

b'

(a) (b) (c)

 b1
2  b1

3  b2
3  b2

3 b1
2  > 

Figure 7.4 The middle-third rule with compression in the 
section: (a) uniformly distributed, (b) triangularly distributed 
and (c) reduced to the effective breadth  b′ 

7.2 Method

The three-dimensional version of a thrust line is a 

thrust network. TNA extends discretized thrust line 

analysis to spatial networks for the specific case 

of gravity loading, using techniques derived from 

graphic statics. Analogously to the two-dimensional 

case of a masonry arch, the resulting thrust network 

is not necessarily a rigid structure by itself, but rather 
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parallel dual graphs: branches which come together in 

a node in one of the diagrams, form a closed space in 

the other, and vice versa, and corresponding branches 

in both diagrams are parallel (Fig. 7.5b). Structurally, 

this means that the equilibrium of a node in one graph 

is guaranteed by a closed polygon of force vectors in 

the other, and vice versa. When the closed polygons 

of the force diagram   * , representing the equilibrium 

of the nodes of the form diagram , are all formed 

clockwise, then the projected form diagram , and as 

a result also the thrust network G, will be entirely in 

compression. The force diagram is furthermore drawn 

to scale such that the magnitude of the axial forces in 

the form diagram, and hence the horizontal compo-

nents of the axial bar forces in the thrust network, can 

be found directly by measuring lengths in the force 

diagram.

7.2.3 Statically indeterminate networks

The static indeterminacy of networks with fixed 

horizontal projection and subjected to vertical loads 

can be explained with a geometrical analogy: for a 

given form diagram, there exist several reciprocal 

diagrams, that is, dual graphs that satisfy the constraints 

that corresponding branches are parallel. Because the 

force diagram represents the horizontal equilibrium 

of the network, these different, geometrically possible 

solutions represent different admissible equilibrium 

states for that form diagram, and consequently the 
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Figure 7.5 (a) Relationship between the thrust network G, its planar projection, the form diagram  and the reciprocal force 
diagram   *  and (b) the reciprocal relation between  and   *  using Bow’s notation to label corresponding elements
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three-dimensional equilibrium solution for given 

loading.

A three-valent form diagram, such as the one 

shown in Figure 7.5, is structurally determinate, which 

means that it has a unique internal distribution of 

forces, again up to a scale factor, which is clear from its 

triangulated reciprocal force diagram. Such networks 

thus only have one degree of freedom: the scale of 

their force diagram, which is, for the same loading, 

inversely proportional to the depth of the equilibrium 

solution. It is thus not possible to redistribute forces 

in such networks, when their horizontal projection is 

considered to be fixed.

For nodes in the form diagram with a valency 

higher than three, the network is structurally indeter-

minate, which means that the internal forces can be 

redistributed in the structure, resulting in different 

thrust networks for the given form diagram, but for 

each given form diagram , force diagram   * , and 

vertical loading P, a unique thrust network G exists 

(Fig. 7.6).

The key strategy in TNA is to give the designer 

direct control over the distribution of the thrusts in 

the system. The designer can choose these horizontal 

forces within the geometric constraints of the recip-

rocal relationship between form and force diagram. 

As in graphic statics, both form and force can be 

manipulated to determine the equilibrium shape. The 

intuitive force diagrams allow the designer to visually 

and explicitly distribute internal forces that define 

the three-dimensional equilibrium shape (Fig. 7.7). 

Boundary conditions and a solution space can be 

imposed on the equilibrium shape, which in turn 

controls the internal forces.

7.3 Computational set-up

This section introduces the equilibrium equations 

of the thrust network (Section 7.3.1), the branch-

node data structure (Section 7.3.2) that allows for an 

efficient matrix notation (Section 7.3.3), for use in an 

implementation of TNA (Section 7.3.4).

7.3.1 Equilibrium equations

The equilibrium of a typical internal node i in G (Fig. 

7.8) can be written as

  F 
H, ji

  +  F 
H,ki

  +  F 
H,li

  = 0, (7.1a)

  F 
V, ji

  +  F 
V,ki

  +  F 
V,li

  =  P 
i
 , (7.1b)

where  F 
H, ji

  and  F 
V, ji

  are respectively the horizontal 

components, combining x- and y-components as force 

vectors, and vertical components of the branch forces 

coming together in node i, and  P 
i
  the vertical load 

applied at the node.

Because the form ( ) and force (  * ) diagrams are 

reciprocal, the branch forces in , hence the horizontal 

components  F 
H, ji

  of the axial forces  F 
ij
  of the thrust 

network G, are equal to the corresponding branch 

lengths  l  
H, ji

  *
   in   * , multiplied with the scale factor 1/r 

of the reciprocal diagram

P

P

P

P

Figure 7.6 Indeterminacy of a four-bar node: for the same load P: left – an equal distribution of horizontal forces results in a 
symmetric network; and right – attracting more thrust in one direction results in a shallower network in that direction
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Figure 7.7 Indeterminacy of a four-valent network: for the same uniformly distributed loading, (a) an equal distribution of 
horizontal forces results in a thrust network with the typical ‘pillow’ shape and (b–h) the attraction of higher force in certain 
regions results in creases in the equilibrium solution

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


78   PHILIPPE BLOCK, LORENZ LACHAUER AND MATTHIAS RIPPMANN

  F 
H, ji

  =   1 __ r     l  
H, ji

  *
  , (7.2)

where the reciprocal branch lengths

 l  
H, ji

  *
  = √

_____________
  ( x  

i
  *  −  x  

j
  *  ) 2  + ( y  

i
  *  −  y  

j
  *  ) 2   ,

are defined as a function of the reciprocal node 

coordinates.

It is thus sufficient only to describe the vertical 

equilibrium of the nodes of G since their x- and 

y-coordinates are defined by the choice of a form 

diagram, , and a horizontal equilibrium of the thrust 

network is guaranteed to be in equilibrium by the 

chosen ‘closed’ reciprocal force diagram   * . There are 

thus only  n 
N
  equilibrium equations needed, one for each 

free (non-supported) node of the thrust network G.

The (vertical) equilibrium equations (7.1b) can be 

written as a function of the  F 
H, ji

 , and the geometry of 

the network G:

 F 
H, ji

     
( z 

i
  −  z 

j
 )
 _____ 

 l 
H, ji

 
   +  F 

H, ki
     

( z 
i
  −  z 

k
 )
 ______ 

 l 
H, ki

 
   +  F 

H, li
     

( z 
i
  −  z 

l
 )
 _____ 

 l 
H, li

 
   =  P 

i
 , (7.3)

with

 l 
H, ji

  =  √
_____________

  ( x 
i
  −  x 

j
  ) 2  + (  y 

i
  −  y 

j
  ) 2   

the lengths of branches ij of the form diagram .

Using equation (7.2), and plugging it into the 

nodal equilibrium equations (7.1b), after multiplying 

both sides by r, gives

 l   
H, ji

  *
      

 z 
i
  −  z 

j
 
 ____ 

 l 
H, ji

 
   +  l  

 H,ki
  *

      
 z 

i
  −  z 

k
 
 _____ 

 l 
H,ki

 
   +  l  

 H,li
  *

      
 z 

i
  −  z 

l
 
 ____ 

 l 
H,li

 
   =  P 

i
   r, (7.4)

or after rearranging,

 (    l  H, ji
  *

  
 ___ 

 l 
H, ji

 
   +   

 l  
H, ki

  *
  
 ___ 

 l 
H, ki

 
   +   

 l  
H, li

  *
  
 ___ 

 l 
H, li

 
   )    z 

i
  −   

 l  
H, ji

  *
  
 ___ 

 l 
H, ji

 
     z 

j
 

 −   
 l  

 H, ki
  *

  
 ___ 

 l 
H, ki

 
     z 

k
  −   

 l  
H, li

  *
  
 ___ 

 l 
H, li

 
     z 

l
  −  P 

i
   r = 0, (7.5)

which is written as a linear combination of  z 
i
 , the 

unknown nodal heights of G, and the inverse of the 

scale of   * , r, and by substituting with constants  d 
i
 , 

which are a function of the known branch lengths of 

 and   * ,

  d 
i
    z 

i
  −  d 

j
    z 

j
  −  d 

k
    z 

k
  −  d 

l
    z 

l
  −  P 

i
   r = 0. (7.6)

7.3.2 Data structure

As in FDM (see Chapter 6), the topology of the 

thrust network G, and in TNA thus also , can effec-

tively be captured using an m × n branch-node matrix 

C = [ C 
N
 | C 

F
 ]. The m ×  n *  (i.e. m × f, with f the number 

of spaces in ) dual branch-node matrix  C *  contains 

the connectivity information of the reciprocal force 

diagram   * .

The branch-node matrix  C *  of the reciprocal force 

diagram   *  can easily be constructed from observation 

of C. For each j-th column of  C * , which corresponds 

to the j-th space in the form diagram  or j-th node 

of the reciprocal force diagram   * , the component  c  
ij
  *
   is 

1 if edge i is adjacent to the j-th space and is oriented 

in the same direction as a counter-clockwise cycle 

around that face in , -1 if opposite, and 0 if the edge 

is not adjacent to that face. This is shown for a simple 

network in Section 6.4.1. For the network in Figure 

7.9a, the C-matrix becomes

 C = 

 1 2 3 4 5 6 7 8 9

⎡ 1 −1 . . . . . . . ⎤ I

⎢ 1 . −1 . . . . . . ⎥ II

⎢ 1 . . −1 . . . . . ⎥ III

⎢ 1 . . . −1 . . . . ⎥ IV

⎢ . 1 −1 . . . . . . ⎥ V

⎢ . . 1 −1 . . . . . ⎥ VI

⎢ . . . 1 −1 . . . . ⎥ VII

⎢ . 1 . . −1 . . . . ⎥ VIII

⎢ . 1 . . . −1 . . . ⎥ IX

⎢ . . 1 . . . −1 . . ⎥ X

⎢ . . . 1 . . . −1 . ⎥ XI

⎣ . . . . 1 . . . −1 ⎦ XII

 (7.7)

F
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F
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Figure 7.8 Static equilibrium of a single node i, with 
corresponding: left – form diagram ; and right – force 
diagram   * 
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The dual branch-node matrix  C *  can be constructed by 

inspection of , and becomes,

  C *  = 

 a b c d e f g h 

⎡ −1 1 . . . . . . ⎤ I

⎢ . −1 1 . . . . . ⎥ II

⎢ . . −1 1 . . . . ⎥ III

⎢ 1 . . −1 . . . . ⎥ IV

⎢ . 1 . . . −1 . . ⎥ V

⎢ . . 1 . . . −1 . ⎥ VI

⎢ . . . 1 . . . −1 ⎥ VII

⎢ −1 . . . 1 . . . ⎥ VIII

⎢ . . . . −1 1 . . ⎥ IX

⎢ . . . . . −1 1 . ⎥ X

⎢ . . . . . . −1 1 ⎥ XI

⎣ . . . . 1 . . −1 ⎦ XII

 (7.8)

The directed graph, shown in Figure 7.9b, was created 

by assigning directions to all branches of the reciprocal 

diagram   * . The reciprocal diagram was constructed 

from  following the clockwise convention necessary 

to guarantee a compression-only solution. It can 

be seen that when following these conventions, all 

corresponding directed branches in  and   *  are not 

only parallel but also have the same orientation. This 

property is a requirement for a compression-only 

reciprocal.

There are several ways that the reciprocal diagram  

 *  can be constructed from :

drawn manually, or equivalently constructed 

procedurally, which is the approach used for the 

implementation provided with this chapter (note 

that this approach only works for small and/or 

simple networks);

automatically generated using an optimization 

problem (Block, 2009);

computed directly by identifying the independent 

force densities  q 
indep

  and using algebraic methods 

(Block and Lachauer, 2013);

obtained iteratively by enforcing the reciprocal 

constraints explicitly on the geometry of  and   *  

(Rippman et al., 2012) (see Chapter 13).

7.3.3 Matrix formulation

The equilibrium equations (7.5) can be written in 

matrix form as

  C  
N
  T
  ( L  

H
  −1  L  

H
  *

  )Cz − rp =  C  
N
  T
  (T)Cz − rp = 0. (7.9)

When comparing equation (7.9) with (6.29) in the 

force density method, it is clear that the force densities 

q have to be the parameters t relating the lengths of 

II

IX

VIIIVII

V

IV

III

XII

X

VI

XIXII

VIII V

IV II

IX

X

VII VIIII

XI

I

I

1 2

5

3

h e

fg

c
b

d
a

6

3

4

15
9 7

D

2

A B

C

FE

4

(a) (b)

8

H G

 *

Figure 7.9 Directed (a) form and (b) force diagram. Nodes in  and corresponding reciprocal spaces are labelled using 
numbers, faces in  and reciprocal nodes using letters, and branches in  and   *  using roman numbers
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corresponding branches of  and   * , divided by the 

scale factor r,

 q =   1 __ r     L  
H
  −1  l  

H
  *

   =   1 __ r    t. (7.10)

An important difference with FDM is that in TNA 

not all force densities q can be chosen freely. Only 

specific sets of q result in equilibrium solutions for G 

that have their fixed horizontal projection equal to the 

form diagram . These possible sets of q correspond to 

the geometrically allowed reciprocal diagrams, that is, 

those who respect the parallelity constraints, for . It 

is possible to identify the independent  q 
indep

  from the 

total set of q which can be chosen freely (Block and 

Lachauer, 2013).

By introducing the  n 
N
  × n matrix D =  C  

N
  T
  TC, the  

n 
N
  ×  n 

N
  matrix  D 

N
  =  C  

N
  T
  T C 

N
  and  n 

N
  ×  n 

F
  matrix  

D 
F 
 =  C  

N
  T
  T C 

F
 , equation (7.9) can be written as

 Dz − rp =  D 
N
  z 

N
  −  D 

F
  z 

F
  − rp = 0, (7.11)

separating the  n 
N
  free (non-supported) nodes from 

the  n 
F
  fixed (supported) nodes at the boundaries.

For a given scale of the reciprocal diagram 1/r 

and boundary heights  z 
F
 , one immediately finds, for 

the chosen  and   * , the inside geometry  z 
N
  of the 

equilibrium network G

  z 
N
  =  D  

N
  −1  ( pr −  D 

F
  z 

F
  ) . (7.12)

It is also possible to find a solution within given 

boundaries,  z LB  and  z UB , by formulating equation (7.9) 

as a linear optimization problem, with as variables all 

the z-coordinates and the scale factor r

  min  
z,r

   − r such that 

⎧Dz − rp = 0

⎨ z LB  ≤ z ≤  z UB 

⎩0 ≤ r ≤ +∞ 

. (7.13)

which renders, if a solution exists, the deepest 

compression-only thrust network within the structural 

depth of the vault, for the chosen form and (propor-

tional) force diagram, within the given boundaries.

The direct approaches in equations (7.11) and 

(7.12) can be used for problems in which the loading 

is known a priori. When form finding a shell, that is, 

the shape of the shell is not known in advance, then 

the loads due to self-weight are not known a priori. 

Instead, they need to be found through an iterative 

procedure, taking at each step the weights propor-

tional to the tributary area of the nodes. Because both 

equations (7.11) and (7.12) solve fast, this is not a 

problem.

After a thrust network G is found, the axial branch 

forces s are then obtained directly as

 s =   1 __ r  Lt, (7.14)

where L are the branch lengths in three dimensions.

7.3.4 Process

In Figure 7.10, the general computational design 

process for forward TNA is illustrated. The form-

finding procedure begins with an initial form diagram 

 as user input. Based on the connectivity of the form 

diagram, the matrices C and  C *  are generated. In the 

next step, a reciprocal force diagram   *  is generated, 

representing one possible horizontal equilibrium state 

for G. For simple cases, that is, small networks, this 

can be done by manually using methods from graphic 

statics. For more complex networks, this is done using 

one of the strategies given in Section 7.3.2. Based on  

 * , a feasible set of force densities q is calculated using 

equation (7.10). Subsequently, the user chooses the 

heights of the support nodes  z 
F
  and the scale r. The 

tributary load for each node is estimated – for example, 

by using the cells of a Voronoi diagram as tributary 

load areas – resulting in the vector p (see Section 

14.2.3). Based on p, r,  z 
F
 , q and C, the heights of the 

unsupported nodes  z 
N
  are solved; for example, using 

the simple forward TNA method, from equation 

(7.11).

Based on the topological information provided 

by C, and the nodal heights  z 
F
  and  z 

N
 , the thrust 

network G can be visualized in three dimensions. This 

representation enables the designer to examine if the 

spatial and formal requirements are met. If the result 

is not satisfying, the form diagram , the internal 

force distribution, represented by   * , the overall scale 

factor r, or the heights of the supports  z 
F
  have to be 

changed iteratively.
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tool used for this example ensures that the reciprocal 

relationship between the form and force diagram is 

enforced during the design exploration and solves for 

the thrust network. For details about the implemen-

tation and algorithms involved, we refer to Rippmann 

et al. (2012).

The design process starts with a simple four-valent 

grid as a form diagram. Figure 7.11 shows the different 

design choices step by step, always showing the form 

(left) and force (middle) diagrams, and the resulting 

thrust network (right). The grid is generated based 

on the local (u,v)-coordinate system of a quadrilateral 

NURBS patch that is drawn by the user.

Here, the force diagram is initially generated such 

that its branches are about equal in length, that is, 

the horizontal forces in the thrust network are about 

equally distributed. This choice results in a thrust 

network with the shape of a ‘pillow’ (Fig. 7.11a).

In the subsequent step, a second network patch is 

added to the form diagram (Fig. 7.11b). The ‘stitching’ 

of the two patches results in two identifiable parts in 

the force diagram. The effect of the slight change in 

direction between the branches of the two subgrids of 

the form diagram is clear in the force diagram with 

the separation of the two patches. Longer lengths in 

the force diagram are equivalent to higher thrusts in 

the thrust network, which result in a gentle undulation 

in the equilibrium shape, as forces are being attracted 

along this line.

In the next step (Fig. 7.11c), this effect is 

exaggerated by attracting more force along the inner 

edge between the patches. This is done by locally 

‘stretching’ the force diagram along that line, without 

changing the form diagram. As the manipulation does 

not necessarily preserve parallelity, a diagram is found 

that satisfies the reciprocal constraints closest to the 

new configuration. The resulting equilibrium shape 

now clearly features a crease line.

Two new effects are introduced in the following 

step (Fig. 7.11d). First, the form diagram is deformed 

such that the angle between the branches at the 

edge of the two patches increase towards the bottom 

middle support. The new, enforced ‘flow of forces’, 

represented by this change in the form diagram results 

in an accumulation of forces along the edge between 

the two patches, causing an increasing crease in the 

thrust network. Second, the top edges of the two 

No

START

Draw form diagram 

Generate force diagram *

Construct topology C, C*

Calculate weights p

Solve for node heights z
N

Visualize network G

Result satisfying?

Choose support heights z 
F

and scale r

END

Horizontal equilibrium

Vertical equilibrium

update

update

update

Yes

Figure 7.10 Overview of the TNA process

7.4 Interactive design exploration

This section will go through the design process of the 

pavilion vault, demonstrating how TNA allows the 

full control of three-dimensional equilibrium, and 

thus the ability to steer the form of the compression-

only vault in a very intuitive and flexible manner. The 
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(a)

(b)

(c)

(d)

(e)

(f )

Figure 7.11 (left) Form and (middle) force diagrams, and (right) thrust networks, of the sequential steps of the design 
exploration

patches are aligned to generate a continuous edge 

condition.

Until now, all edges were considered fully supported. 

By adding branches to the edge spanning both patches 

on the top, an ‘edge arch’ is formed (Fig. 7.11e). This 

results in the fan-like part in the force diagram. This 

triangulated part of the force diagram exactly corre-

sponds to the force diagram of a simple funicular arch 
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in graphic statics (Fig. 7.3c). The geometry of this 

edge arch in plan is constrained by this part of the 

force diagram. In addition, the bottom supports are 

lowered, with the idea of trying to achieve an even 

more accentuated crease. This action is rejected in the 

next step by the designer.

Shown in the final step (Fig. 7.11f ), all other 

supported edges are replaced by edge arches except 

one, added in the same manner as discussed above. 

The resulting thrust network represents the final 

design (Fig. 7.12).

This design example shows that with TNA an 

expressive funicular shell can be designed. This is 

achieved thanks to a controlled exploration of the 

degrees of freedom of the highly indeterminate, 

three-dimensional funicular structures. The control 

parameters were:

the form diagram, defining the discretization and 

the choice of the flow of forces;

the reciprocal force diagram, allowing (re-)distri-

bution of the horizontal forces;

the scale of the force diagram, controlling the 

overall depth of the equilibrium solution;

the height of the boundary supports;

the edge condition, that is, closed, which means 

fully or partially supported, versus open, which 

results in a three-dimensional edge arch.

7.5 Materials, details and 
construction challenges

The materialization process of discrete stone vaults 

begins with the planning and generation of the 

tessellation, which defines the cut pattern of the 

structure. Based on this tessellation, the geometry of 

the individual voussoirs is generated. The subsequent 

materialization and construction phases include the 

fabrication of individual elements and the erection 

of the structure on full in-situ falsework. The overall 

process is informed by structural and fabrication-

related requirements to ensure structural stability and 

to minimize material usage, energy consumption and 

fabrication time.

7.5.1 Tessellation

The tessellation is based on the overall funicular 

shape of the vault generated with TNA. The resulting 

thrust network can be seen as an approximation of 

a continuous compression surface, representing the 

centre geometry of the vault, excluding the thickness 

of the structure. The digital representation of this 

surface is either a NURBS-surface or a very dense 

mesh geometry, which serves as a target surface for 

the tessellation. A user-assisted optimization process 

allows the generation of a feasible pattern on the 

irregular doubly curved thrust surface, incorporating 

various, correlated design criteria (Rippmann and 

Block, 2013).

Besides architectural and tectonic considerations, 

these criteria include structural stability as well as 

fabrication and construction feasibility. The tectonic 

expression of the vault is dominated by the topology 

of the tessellation, which is defined by drawing lines 

onto the thrust surface or by using assisting tiling 

strategies. A parallel, automated process guarantees 

that all lines are as perpendicular or parallel as possible 

to the local force flow, as the orientation of the tessel-

lation needs to be aligned to the local force vector 

field to prevent sliding failure between the voussoirs. 

The force flow is sometimes equated to the direction 

of steepest descent, the so-called rainflow analogy. 

The force flow can also be deduced from the results 

of the TNA form-finding process, by taking the sum 

of forces in each node, with all the forces oriented 

(b)

(d)

(a)

(c)

Figure 7.12 The final design: (a) form diagram, (b) force 
diagram, (c) force distribution and (d) the thrust network
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downwards (multiplied by the sign of the vertical 

coordinate differences). The difference between both 

approaches is particularly evident near open edges of 

a vault (Fig. 7.13). The nodal force flow vectors are

  f 
x
 = −   w

 ___ 
|w|

    Dx,

  f 
y
 = −   w

 ___ 
|w|

    Dy, (7.15)

  f 
z
 = −   w

 ___ 
|w|

    Dz,

with w = Cz.

Furthermore, the prevention of sliding failure 

and full three-dimensional structural action is 

achieved using tessellation bonds in which neigh-

bouring discrete pieces interlock. Fabrication and 

material-related parameters are taken into account by 

constraining the length of the edges of the tessellation 

pattern to a specific value, or within a given range, 

informed by machining limitations and maximum 

block dimensions. In this assisted design process, 

the best solution of a tessellation for a given surface, 

driven by the force flow, edge length restrictions 

and the topology, is found using an iterative solving 

algorithm based on a relaxation approach.

7.5.2 Voussoir geometry

In a next step, individual voussoirs are generated from 

the tessellation, the thrust surface and data regarding 

the local thickness of the structure, which is calcu-

lated based on the non-funicular live load cases (see 

Chapter 13). Each contact face is described by lofting 

through a set of lines normal to the thrust surface, 

resulting in an alignment normal to the force flow. 

The resulting contact faces are twisted ruled surfaces 

(Fig. 7.14).

The load-transmitting contact faces should have 

a flush alignment, and thus also a high geometric 

accuracy in the fabrication process, in contrast to the 

upper and lower surfaces of the voussoirs. Circular 

blade stone cutting fulfils these precision require-

ments and is at the same time one of the most efficient 

stone-machining processes (Fig. 7.15). However, to 

use this technology requires planar cuts. An iterative 

procedure was thus developed to planarize most 

contact faces. Computer numerical controlled (CNC) 

machines with five or more axes are used to process 

the voussoirs. In contrast to the planar contact faces, 

the upper and lower surfaces can only be approxi-

mated by progressively using parallel cuts tracing the 

doubly curved geometry.

(a) (c) (d)(b)

Figure 7.13 (a) A simple vault, with (b) vectors of steepest descent, that is, the rainflow analogy, (c) internal forces and (d) 
vectors from forces

surface  normal

force field

voussoir

contact face

Figure 7.14 The tessellated vault geometry, showing 
voussoirs, their contact faces, surface normals (blue) and 
force field (grey)
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7.5.3 Structural scale model

Once the tessellation is designed and the voussoir 

geometry constructed, the structural behaviour of 

the vault can be tested using a 3D-printed struc-

tural scale model. A qualitative understanding of the 

stability of the vault can be achieved by just manually 

applying ‘point loads’ to the model (Fig. 7.16). Discrete 

structural scale models provide insight into the struc-

tural behaviour of an unreinforced masonry structure 

– and compressive funicular shells in general. Because 

of the scalability of compression-only masonry struc-

tures, which is due to their very low stresses and 

stability based on their geometry (Heyman, 1995), 

the models enable a reliable prediction of the stability 

of a real-scale stone structure for corresponding load 

assumptions. These unglued, 3D-printed, ‘masonry’ 

scale models thus serve as convincing validation of the 

TNA results. By applying point loads and observing 

the partial and incremental collapse of the scale model, 

the force distribution assumptions made for the design 

can be checked directly and possible collapse mecha-

nisms under extreme loading cases (see Section 13.7) 

can be determined.

7.5.4 Installation

After fabrication, all individual voussoirs are assembled 

in situ on falsework, starting at the foundations, which 

Figure 7.15 A 5-axis circular blade saw

Figure 7.16 Gradual collapse of a 3D-printed, unglued structural model of the vault due to manually induced point loads
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are connected by tension ties to avoid spreading 

due to the horizontal thrusts at the supports. This 

process demands accurate measurements through 

construction site survey to minimize the accumulation 

of errors due to fabrication and assembly tolerances, 

and consequently guarantee the exact position of 

all voussoirs during installation. The symmetry of 

traditional vault shapes helps to identify and build up 

stable sections, meaning that construction sequences 

are in static equilibrium and falsework can be removed, 

and reused during the erection process. In contrast, 

stable construction sequences for the installation of 

‘freeform’ vaults are less obvious to identify and often 

limited to small patches of the structure. Thus, the 

falsework needs to support the entire structure during 

construction until the last voussoir is in position. The 

subsequent decentring of the falsework needs to be 

done uniformly in order to prevent asymmetric loading 

caused by partial, decentred falsework. Conventional, 

modular falsework systems for concrete structures 

can be used to carry the loads of the voussoirs during 

construction.

7.6 Conclusion

This chapter has shown how to generate geometries 

for vaulted masonry structures using thrust network 

analysis. The equilibrium of a simple arch was explained 

using thrust lines and graphic statics. This concept was 

then generalized to the three-dimensional and stati-

cally indeterminate thrust networks by introducing 

the reciprocal form and force diagrams. The reader 

was introduced to the equilibrium equations of the 

nodes in thrust networks and the construction of the 

data structure, which allowed the generation of the 

thrust networks using simple linear algebra.

The step-by-step design explanation for the Texas 

vault has been explained in depth, followed by a 

discussion on the materialization and construction of 

the cut-stone vault. This chapter is inspired by a real 

design case for an unreinforced, cut-stone vault, with a 

model for the real project shown in Figure 7.17.

Key concepts and terms

Graphic statics is a structural design and analysis 

method developed in the nineteenth century. It uses 

form and force diagrams to calculate the equilibrium 

of pin-jointed structures graphically.

A form diagram is used in graphic statics as represen-

tation of the geometry of a pin-jointed structure.

A force diagram is used in graphic statics as repre-

sentation of the (equilibrium of the) inner forces in 

a pin-jointed structure. Form and force diagrams are 

reciprocal diagrams.

Reciprocal diagrams are two planar diagrams that are 

topologically dual, with parallel corresponding edges.

A funicular represents the shape of a weighted 

hanging string and corresponds to an admissible 

equilibrium state of a planar arch for the same loads.

A thrust network is the generalization of the funicular 

or thrust line, representing the spatial equilibrium 

state of a vault as pin-jointed system.

The middle third rule states that a masonry arch is 

safe, and without tension, as long as the resultant 

Figure 7.17 Final model of the real Texas pavilion project
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force at each interface between blocks stays within the 

middle third of the cross section.

Exercises

The thickness of the 21.5m hemispherical dome of 

the Temple of Mercury (see page 20) varies from 

1.6m at the bearing to 0.6m at the crown. Can you 

explain why historic cut-stone domes have such a 

structural depth? Why is it possible to open up the 

middle with an oculus (3.65m)?

Consider the standard grid (Fig. 6.12) as a simple 

four-valent form diagram. Construct its reciprocal 

force diagram (it helps to label the nodes and 

spaces of both diagrams using Bow’s notation). 

Implement a routine that generates the C any  

C *  matrices for the same standard grid, and check 

them with the labelled diagram you just produced.

Implement a forward TNA solver using the previ-

ously implemented routine for the construction of 

C and  C *  matrices. Use this solver to generate a 

thrust network G for the previously drawn form 

and force diagrams,  and   * , considering uniform 

loading (i.e. the same vertical load applied at each 

node). We want to explore a number of stable 

cut-stone shell forms as design options. Modify the 

internal force distribution by changing the recip-

rocal force diagram to generate, using the simple 

solver above, different thrust networks. Note that 

allowed reciprocal form and force diagrams have 

parallel corresponding edges.

Further reading

The Stone Skeleton: Structural Engineering of Masonry 

Architecture, Heyman (1995). This book is the best 

reference to learn about how and why masonry 

structures work.

Form and Forces: Designing Efficient, Expressive 

Structures, Allen & Zalewski (2009). This book, 

also recommended in Chapter 1, provides an 

exciting introduction to graphic statics for design. 

Chapter 8 gives an overview of the key aspects 

to be considered in the design of an unreinforced 

masonry (vaulted) structure.

‘Thrust network analysis: exploring three-dimen-

sional equilibrium’, Block (2009). This PhD 

dissertation from MIT gives the most detailed 

introduction of the TNA method.

‘Interactive vault design’, Rippmann et al. (2012). 

This journal paper explains the algorithms behind 

the plug-in for the CAD-program Rhinoceros for 

funicular shell form finding, RhinoVAULT.

‘Rethinking structural masonry: Unreinforced, 

stone-cut shells’, Rippmann and Block (2013). This 

journal publication describes the details of the 

structurally informed, fabrication-optimized digital 

design chain developed to design and fabricate the 

cut-stone voussoirs of the MLK Jr Park Vault in 

Austin, TX, USA.
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CHAPTER EIGHT

Dynamic relaxation
Design of a strained timber gridshell

Sigrid Adriaenssens, Mike Barnes, Richard Harris and Chris Williams

LEARNING OBJECTIVES

Explain the difference between a strained and 
unstrained gridshell.
Describe material constraints, connection 
details and construction techniques for 
gridshells.
Explain the dynamic relaxation form-finding 
technique including the bending effect of 
continuous splines.
Use the dynamic relaxation method to find the 
form of a gridshell.
Perform the form finding of a strained gridshell.

A gridshell, such as the one shown in Figure 8.1 and 

page 88, is essentially a shell with its structure concen-

trated into individual members in a relatively fine grid 

compared to the overall dimensions of the structure. 

The members may be short in length and only pass 

from node to node, or they may be continuous, 

crossing each other at the nodes. The grid may have 

more than one layer, but the overall thickness of the 

shell is small compared to the overall span.

This chapter discusses gridshells that are either 

made from initially straight elements and or prefabri-

cated from curved members. The method of dynamic 

relaxation can be used for the form finding of either.

The brief

Barbados, an island in the Caribbean Sea, is famous 

for its yearly Crop Over, a harvest festival held in the 

months of July and August. For the entire two months, 

life for many islanders is one big party. For this event, 

the capital Bridgetown needs a large-span pavilion 

with a 50m × 50m footprint to hold the crafts market 

and shelter the visitors from sun, wind and occasional 

rain. The pavilion will provide shelter to 150 stalls and 

two restaurants, which totals 2,500m2 of covered area. 

The client wants this pavilion to harmonize with the 

local crafts and to promote sustainability at the same 

time. We, the designers, select a gridshell made of 

local wood. Barbados cultivates wood that can be cut 

with mobile sawmills.

8.1 The strained gridshell

Our proposal for the Bridgetown Pavilion uses long, 

slender, continuous wood laths arranged in a grid. 

These laths, or structural splines, are both flexible and 

strong. A spline is an initially straight member that is 

bent into a spatial, continuous curve. The word ‘spline’ 

originally denoted the flexible wooden or metal strip 

draughtsmen and women used to draw smooth ship 

lines and railway curves. The most simple and familiar 

structural spline examples are pole vaults and slender 
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battens that prestress umbrellas, camping tents and 

sails. When combined in a grid and bent, the splines 

form a structural, complex, curved surface. This initial 

bending action strains the shell, hence the term 

‘strained’ gridshell. In contrast, the ‘unstrained’ gridshell 

is a curved system that in its initial state is stress-free 

(apart from stresses due to self-weight). Initially, the 

grid for the Bridgewater Pavilion is formed from 

continuous, straight wooden splines bolted together at 

uniform spacing in two directions. When flat, the grid 

with its scissor-pinned connections is a mechanism 

with one degree of freedom. If the grid members were 

totally rigid and connected with frictionless joints, the 

movement of one member parallel to another would 

cause a sympathetic movement in the entire grid. As 

a result, all squares would become parallelograms, 

and the diagonal length between the joints would 

change as shown in Figure 8.2. This grid distortion 

feature, combined with the grid’s flexibility, is crucial 

to the erection method which moulds the initially 

flat grid into a three-dimensional structural surface 

(see Section 8.7). This construction method contrasts 

with that of the unstrained gridshells; these shells are 

assembled from prefabricated curved subframes.

In addition to the distortion of the squares to 

parallelograms, the layers of a multi-layer, strained 

gridshell have to slide over each other during erection. 

Sometimes slotted bolt holes are used to allow this 

sliding movement. The blocking pieces between the 

upper and lower layers, shown on page 88 and Figure 

8.3c, can be added after erection to ensure composite 

bending action between the separate layers.

If the geometry of a gridshell is derived from a 

hanging model, and it is loaded with its own self-

weight, then it experiences no bending as a result of 

gravity loading. In reality, live loads are larger than 

self-weight, for these light and efficient structures, 

and unevenly distributed over the nodes. These live 

loads, especially the point loads, cause bending of 

the laths resulting in large shell displacements and 

changes in angle between the laths. To reduce this 

shell movement, diagonal stiffness can be introduced 

in different ways, through:

joint rigidification;

the addition of diagonal ties with a cross-sectional 

area less than the laths;

addition of cross-bracing of equal area to the laths.

In the latter case, the diagonally braced shell will 

behave very much like a continuous shell.

Figure 8.3a shows in-plane membrane stresses 

acting upon a square element, cut out of a continuous 

shell surface, made of an isotropic material (see also 

Section 3.1.1). In a well-designed structure, this will be 

the prime mode of structural action. In addition, there 

will be out-of-plane bending and twisting moments 

and the associated shear forces acting normal to the 

surface. The element’s orientation has no influence 

on the force-displacement characteristics of the shell. 

A similar element in a gridshell, however, resists 

Figure 8.1 The gridshell roof of the Savill Building at the Windsor Great Park, UK, 2006

Figure 8.2 Frictionless pinned connections allow members 
to rotate and propagate the distortion throughout the grid
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membrane forces only in the direction of the laths. 

Out-of-plane bending can be resisted, but diagonal 

forces between parallel laths cannot be transmitted in 

the initial pinned situation. Once the grid is moulded 

and fixed into its final form, the additional diagonal 

cable layer or the joint rigidification gives the shell its 

in-plane shear stiffness.

Figure 8.4 shows the diagonal bracing network 

positioned outside the gridshell in the 2007 

Chiddingstone Orangery. This in-plane shear stiffness, 

combined with the blocking pieces between the layers 

and the connections to the boundary supports, locks 

the flexible grid into shape. These locking methods 

together with the shell’s spatial curvature must ensure 

that the thin, lightweight gridshell is stable under all 

loading combinations. Live loads cause bending and 

deflections that change the initial gridshell shape. 

With the line of force then positioned eccentri-

cally from the initially defined shell surface shape, 

these direct forces produce bending moments. As the 

loads increase, the stiffness decreases. At a certain 

critical value of load, the gridshell no longer resists 

an increase in load and collapses. This characteristic is 

typical of compression systems.

Since the axial stiffness of the laths is relatively 

high, the main techniques for increasing the collapse 

load are the addition of in-plane diagonal stiffness and 

increasing the out-of-plane bending stiffness. The cross-

sectional dimensions of the laths are limited by the 

need to bend them into shape. To increase the second 

moment of area of the shell (and thus the out-of-plane 

bending stiffness) more layers can be added. Blocking 

pieces between the layers are put in to ensure composite 

action over the entire depth of the shell.

Gridshells may collapse due to buckling while all 

the members are still elastic. Alternatively, some part 

may break, leading to collapse before elastic buckling 

occurs. Because of the diagonal flexibility, and often 

lack of rigid boundary support, gridshells tend to 

deflect a relatively large amount before collapse, 

especially compared to conventional shell structures. 

This feature makes them less efficient, but it does 

mean that initial imperfections in their shape are 

relatively unimportant (see Chapter 3).

8.2 The unstrained gridshell

An unstrained gridshell differs from our proposed 

strained system in that it is curved and unstrained 

in its initial state and is made from an assembly of 

relatively short straight or pre-bent members. The 

curvature can be induced in two ways. The first 

method uses pre-bent steel or aluminium members or 

curved laminated timber. Alternatively, the members 

may be straight and the change in member direction 

is achieved at the nodes. The nodal connections have 

to be moment resisting to prevent buckling, or the 

shell has to consist of more than one layer, producing 

a curved-space frame. Unstrained subframes can 

be fabricated in the controlled environment of a 

workshop and assembled on site on falsework tailored 

to the form of the complete shell surface.

The shape development of recent unstrained 

gridshells is often driven by a combination of aesthetic, 

(b)

(a)

(c)

Figure 8.3 Structural action on (a) a continuous and (b) a 
gridshell element, and (c) a multi-layer gridshell element with 
blocking pieces
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Figure 8.4 The double-layer gridshell with external bracing of the Chiddingstone Orangery in Kent, UK, 2007

geometrical, physical and constructional considera-

tions. The recent emergence of ‘freeforms’ illustrates 

a design approach with sculptural or aesthetic design 

intent as the major shape driver. With computer-aided 

modelling tools at hand, more designers base their 

freeform work on aesthetic considerations that achieve 

scenographic effects, in and around the shell, but pay 

no particular attention to structural efficiency of the 

form. The organically twisted, merging gridshells of 

the Murinsel in Graz, shown in Figure 8.5, exemplify 

this approach. These sculpturally merging steel and 

glass gridshells form a connection between the banks 

of the river Mur.

These contemporary freeforms or ‘blobs’ contrast 

sharply with smart shells based on ‘simple’ geometries. 

Since antiquity, analytically defined geometries have 

been favoured for their constructive and structural 

qualities. The hyperbolic steel shell of the Shukhov Tower 

demonstrates how surfaces of revolution lend themselves 

to shell action and discretization into straight elements. 

Translational surfaces, such as the Hippo House in 

Figure 8.6, have the additional advantage of discre-

tization into planar meshes. From an economic cladding 

perspective, mesh planarity is desirable especially for 

sheet materials such as glass and steel.

The importance of the shell’s geometry cannot be 

overemphasized. The form decides whether the thin 

shell will be stable, safe and sufficiently stiff. Finding 

the ‘right’ geometry under the chosen loading (usually 

gravity) means that under this design load any bending 

is eliminated and only advantageous membrane action 

results. The structural challenge lies in the determi-

nation of a three-dimensional surface within which the 

shell can be described. Both architects and engineers 

have developed physical and numerical methods to 

generate structurally and constructionally efficient 

three-dimensional gridshell shapes other than the 

‘simple’ geometries. This distinction of form between 

freeform, mathematical and form-found shells is also 

discussed in the Introduction.
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8.3 Dimensional analysis

The physical modelling of shells, including gridshells, 

is discussed in Chapter 4. Here we discuss the case 

of gridshells in more detail. The structural action of 

gridshell structures is so complex that even today 

with powerful and affordable computers, there is 

still a place for physical model testing. The most 

rudimentary physical model can give more accurate 

predictions of deflections and buckling load than 

hand calculations. Because of the complex inter-

action between membrane and bending action, the 

prediction of buckling loads by hand calculations is 

effectively impossible. However, the deflections and 

buckling load from a physical model can be scaled 

using dimensional analysis (see also Section 4.3). A 

sieve-structure is a good example; its behaviour is 

dominated by the bending stiffness of the members, 

whether they are wires or laths. The quantity

   w S 3 
 ____ 

 (   EI __ a   ) 
  , (8.1)

where w is the load per unit area, S the span, EI the 

bending stiffness of a member, and a the member 

spacing.

This quantity is dimensionless – it has no units. 

Therefore, it must have the same value for the small-

scale model and the full-scale gridshell. The effect 

of the diagonal members can be represented by the 

dimensionless group

   
 (   (EA ) 

dia
 
 _____ 

b
   )  S 2 
 ________ 

 (   EI __ a   ) 
  , (8.2)

where (EA ) 
dia

  is the axial stiffness of diagonals and 

b the diagonal member spacing. This dimensionless 

group would have the same value for the model and 

the actual full-scale gridshell.

Note that the model does not have to be made 

from the same material as the full-scale structure, 

provided that the correct Young’s moduli are used. It 

may be convenient to use a wire mesh model to inves-

tigate the behaviour of a full-scale, timber gridshell.

8.4 Implementation

The numerical form-finding method we explore for the 

design of the Bridgetown Pavilion uses the Dynamic 

Relaxation (DR) method and includes the bending 

stiffness of the splines. DR was invented by Alistair 

Day in 1965 and is a numerical procedure that solves a 

set of nonlinear equations. Summarized, the technique 

traces the motion of the structure through time under 

applied load. The technique is effectively the same as 

the leapfrog and Verlet methods, which are also used 

to integrate Newton’s second law through time.

The basis of the method is to trace step by step for 

small time increments, Δt, the motion of each inter-

connected node of the grid until the structure comes 

to rest in static equilibrium. For the form finding of 

the Bridgewater Pavilion, we start from a flat 50m × 

50m square grid with a mesh size of 2m × 2m. This 

mesh is a relatively coarse grid and the actual choice of 

spacing depends on a number of factors including the 

loading on the shell and the type of cladding system.

The grid is supported at its four corners. This condition 

means that forces are concentrated at the corners and 

gridshells are often reinforced at their boundaries by 

Figure 8.5 Freeform, Murinsel gridshell, Graz, 2003

Figure 8.6 Hippo House quadrilateral gridshell, Berlin Zoo, 
1996
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steel or laminated timber arches. All grid splines are 

assigned values for their axial and bending stiffness, 

EA and EI, respectively where E is the Young’s 

modulus, A the cross-sectional area and I the second 

moment of area. The shell edge members are assigned 

higher stiffness values to model the boundary arches.

We cause the motion of the grid by applying a 

fictitious, negative gravity load at all the grid nodes. 

The upwards load avoids having to turn the structure 

upside down to get the hanging tension form. We 

also adjust the position of the four corners to give 

the correct amount of rise to the structure. During 

the form-finding process, the values of all numerical 

quantities (EA, EI and load) are arbitrary since it 

is only their ratios that affect the shape. The axial 

stiffness EA needs to be sufficiently high to give a low 

axial strain and the ratio of bending stiffness EI to the 

weight controls the relative effect of bending stiffness 

and (upwards) weight upon the form. If the bending 

stiffness is set to zero, the resulting form is ‘optimal’ 

but modelling is difficult because the structure tends 

to develop wrinkles in areas of low tension in the 

hanging state. This problem applies equally to both 

physical and computer models.

The real values of stiffness need to be used during 

the structural analysis of the completed structure 

under dead and live loads. If the structure is ‘locked’ 

into shape by blocking pieces, the unstrained shape 

of the structure is now curved. This locking can be 

included in the analysis by treating the bending 

stiffness and initial curvature as being quantities which 

depend upon the orientation relative to the direction 

normal to the grid surface. However, this introduces 

complexities beyond the scope of this chapter.

The DR formulation for this project uses Newton’s 

second law governing the motion of any node i in the 

x-direction at time t. The residual force at node i in the 

x-direction at time t is

  R  
ix
  t
   =  M 

i
   ̇  v    

ix
  t
  , (8.3)

where   ̇  v   
ix
  is the acceleration at node i in direction x at 

time t (the dot indicates that it is the time derivative 

of the velocity). It is the sum of all the forces acting 

on a node from the members connected to it and the 

applied loading. The mass  M 
i
  is the lumped, fictitious 

mass at node i, and for a bar-node system,

  M 
i
  =   Δ t  2 

 ___ 
2
    S 

i
 , (8.4)

where  S 
i
  is the greatest direct stiffness that occurs at 

node i,

  S 
i
  =  ∑ 

m = 1

   
k

     (   E A S 
 ____ 

 L 
0
 
   + G   T  S 

 __ 
 L S 

   ) . (8.5)

This expression covers the worst possible case of all 

links at the node becoming aligned in one single 

direction, where  L 
0
  is the initial length of the link, 

G the factor that allows for the increase of initial 

geometric stiffness due to possible shortening of link 

lengths in the form-finding process. Superscript s 

refers to parameters (initially) specified by the designer, 

m to each member of all k members meeting at node i.

Expressing the acceleration term in equation (8.3) 

in finite difference form and rearranging the equation 

gives the recurrence equation for updating the velocity 

components

  v  
ix
  t+Δt/2  =  v  

ix
  t−Δt/2  +   Δt

 ___ 
 M 

i
 
   R  

ix
  t
   (8.6)

and hence the updated geometry projected to time

  x  
i
  t+Δt  =  x  

i
  t  + Δt   v  

ix
  t+Δt/2 . (8.7)

Equations (8.2) and (8.3) apply for all unconstrained 

nodes of the structure in each coordinate direction. 

These equations are nodally decoupled in the sense 

that the updated velocity components are dependent 

only on previous velocity and residual force compo-

nents at a node. They are not directly influenced 

by the current (t + Δt/2) updates at other nodes. 

Having obtained the complete, updated geometry, the 

new member forces can be determined and resolved 

together with the applied gravity load components  P 
ix
  

to give the updated residuals

  R  
ix
  t+Δt  =  P 

ix
  +  ∑ 

m=1

   
k

      [  (   F __ 
L

   ) ( x 
j
  −  x 

i
 ) ]  

t+Δt

  (8.8)

for all k elements connecting to i, and where  F 
m
  is 

the axial force in member m connecting node i to an 

adjacent node j, and  L 
m
  the current length of member 

m (calculated using Pythagorean theorem in three 

dimensions).
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8.4.1 Viscous and kinetic damping

This process is continued, through each iteration, to 

trace the motion of the unbalanced structure. But, 

thus far, we have not introduced any damping, which 

means that the structure goes past static equilibrium 

and continues to oscillate. This phenomenon can be 

prevented by introducing a ‘viscous damping’ force in 

the opposite direction to the velocity. Alternatively, we 

can use ‘kinetic damping’ in which there is no viscous 

damping but instead all the nodal velocities are set to 

zero when a kinetic energy peak is detected (Figs. 8.7 

and 8.8).

process, following a kinetic energy peak, velocities are 

set to zero. Thus, for the first iteration and after each 

energy peak, or re-initialization,

  v  
ix
  Δt/2  =   Δt

 ___ 
2 M 

i
 
   R  

ix
  0
  , (8.10)

to give effectively  v  
ix
  Δt/2  = −  v  

ix
  Δt/2 , or  v 

ix
  = 0 at time zero. 

After detecting an energy peak, coordinates will have 

been projected to time t + Δt. But the ‘true’ kinetic 

energy peak will have occurred at some earlier time  t  . 

To determine the coordinates at time  t  , a quadratic 

can be fitted through the current (F) and two previous 

total kinetic energy values (D and E) in Figure 8.8.
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Figure 8.7 Effect of (top) viscous damping for (a) 
underdamped oscillations and (b) critically damped 
oscillations, and of (bottom) kinetic damping

Whichever technique is used, the process will 

never truly converge, but once the residual forces are 

below a certain tolerance, convergence has occurred 

for all practical purposes. At that point, we achieve a 

shape that is in ‘static equilibrium’ and have found the 

‘correct’ spatial surface.

With viscous damping the recurrence equations for 

the velocities (8.6), is rearranged so that

  v  
ix
  t+Δt/2  = A   v  

ix
  t−Δt/2  + B    Δt

 ___ 
 M 

i
 
   R  

ix
  t
  , (8.9)

where A = (1 − C/2)/(1 + C/2), B = (1 + A)/2 and C is 

a constant for the complete structure. In cases where 

only kinetic damping is used, A = 1.

On starting or restarting the kinetic damping 

 t*

k
in

et
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n
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t -3Δt / 2 t -Δt / 2 t + Δt / 2t -Δt 

D

E

F

t*

time

t

It is convenient for computation to keep records 

of the difference between the previous and current 

kinetic energies G and H. We define the elapsed time  

t   since the energy peak in terms of these differences,

  t   = t   H
 _____ 

H − G
   = t  q, (8.11)

where H = E − F and G = D − E.

Since coordinates have been updated using average 

velocities (at midpoints of time intervals), they should 

be reset according to the same scheme. Thus,

  x  
i
   t   = x  

i
  t+ t  − t   v  

ix
  t+ t/2  +  t     v  

ix
  t− t/2 . (8.12)

Hence, using equations (8.6), (8.7) and (8.11)

  x  
i
   t    =  x  

i
  t+ t  − t(1 + q)   v  

ix
  t+ t/2  +    t 2 

 ___ 
2
   q   

 R  
ix
  t

  
 ___ 
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i
 
  . (8.13)

Figure 8.8 Kinetic energy peak at t*
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An alternative is to assume that the peak occurs at 

t −   t
 

__ 
2
   and hence q =   1 _ 

2
   in equation (8.13).

For a real dynamic analysis, the lumped mass 

would be the actual mass associated with a node. 

However, to perform form finding and obtain a static 

state in equilibrium, we can choose fictitious masses to 

get the quickest convergence. This phenomenon is less 

of an issue with modern fast computers, but essentially 

the number of iterations needed to get acceptable 

convergence depends upon the value of t, which in 

turn depends upon the highest natural frequency of 

the structure. Thus, if there is a particularly stiff part 

of a structure, like a steel edge beam on a timber grid, 

the fictitious masses should be increased in that area.

8.4.2 Spline elements

The form finding of the Bridgewater Pavilion needs to 

incorporate the effect of bending moments and shear 

forces, caused by bending the flexible wood splines 

from their initially straight state. The spline treatment 

described next, takes into account the resulting 

straining action. The technique adopted requires only 

three translational degrees of freedom per grid node 

and the usual rotational degrees of freedom used to 

accompany bending effects are not required. Often, 

the coupling of these rotational degrees of freedom 

with axial stiffnesses and translational degrees of 

freedom causes conditioning problems in an explicit 

numerical method such as DR. The scheme adopted is, 

in effect, a finite difference modelling of a continuous 

spline element with at least two segments. Figure 8.9 

shows consecutive nodes along an initially straight 

spline, as well as two adjacent deformed segments, a 

and b, viewed normal to the plane of nodes ijk which 

are assumed to lie on a circular arc of radius R. The 

spacing of the nodes along the spline must be suffi-

ciently close to model curvature as it varies along the 

spline, but the segment lengths need not be equal.

From the geometry of Figure 8.9, the radius of 

curvature through ijk,

 R =   
 L 

c
 
 _____ 

2 sin 
 (8.14)

and the consequent moment,

 M =   EI
 __ 

R
  . (8.15)

Note that for a given R and  L 
c
  the value of  is 

independent of the position of the point j along the 

arc. This fact is a consequence of the inscribed angle 

being constant. The bending stiffness EI is assumed 

to be constant along the spline. The free-body shear 

forces, S, of links a and b are:

  S 
a
  =   2EI sin _______ 

 L 
a
  L 

c
 
  ,   S 

b
  =   2EI sin _______ 

 L 
b
  L 

c
 
  . (8.16)

These shear forces act on nodes i, j and k, as shown in 

Figure 8.9, and must be taken as acting normal to the 

links and in the local plane of ijk. To account for the 

stiffness component due to bending at node j, a term 

is added to equation 8.5, so that
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m=1

   
k
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The calculations and transformations required in a 

DR scheme are thus very simple. With sets of three 

consecutive nodes being considered sequentially along 

the entire spline, each set lies in a different plane 

when modelling a spatial curve. If the spline is 

pin-ended, as is normally the case for splines in 

gridshells, no special numerical treatment for end 

conditions is required. If the spline is a closed loop, 

then overlapping end links are required (a similar 

finite difference type of modelling would be required 

for fixed-ended splines using extended end segments). 

If the stiffnesses used when setting nodal masses 

in the DR process are unfactored, the minimum 

length of any traverse segment should not be less 
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Figure 8.9 Consecutive nodes along an initially straight 
spline (above) and two adjacent deformed segments, viewed 
normal to the plane of nodes ijk (below)
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than the radius of gyration of the cross section. In 

practice, this limit is not likely to be approached. If 

this limit is approached, appropriate factoring of the 

bending stiff ness must be applied when setting mass 

components in order to allow for coupling of the axial 

displacements with bending stiff nesses. Incorporating 

the eff ect of out-of-plane bending and twisting of the 

splines makes the form-fi nding process more compli-

cated. For our design project, we do not consider these 

structural behaviours as we assume that all laths will 

be bent in plane.

8.4.3 Result

Figure 8.10 shows a form-found shape exploration for 

the Bridgetown Pavilion. When starting with a fl at 

square grid with four corner supports, DR generates a 

tall, symmetric, curved shape (Fig. 8.10a). Th e splines 

in the curved surface have a large radius of curvature. 

Th is means they will only experience small bending 

action during the erection process from a fl at to curved 

surface. Th e global shape lets rainwater run towards 

the boundary edges. Due to the height of these edges, 

the shell might not provide suffi  cient shading to the 

stalls located in the boundary areas. To create smaller 

spatial pocket s that could have diff erent programmes 

(restaurant versus stalls), and ensure better shading, 

we introduce an additional central support in the 

grid. Th e resulting, form-found shape is lower (Fig. 

8.10b). As a result, the splines are bent to a tighter 

radius and need to be checked for overstraining. Th e 

created central funnel allows for central evacuation of 

drainage water. Figure 8.10c shows yet another shape 

variation using the same initial square grid layout 

with diff erent point supports. In the resulting forms, 

we would need to perform spline curvature, shading 

and water run-off  analysis to guarantee the overall 

feasibility of the shell’s shape.

8.5 Procedure

Th e process for DR with kinetic damping can be 

captured in a fl owchart, shown in Figure 8.11. Th e 

procedure iterates until satisfactory convergence has 

occurred. Th e factor of 0.999 in the calculation of 

velocity is in fact equivalent to viscous damping. If 

one were to use only kinetic damping, this would 

be replaced by 1.0. In practice, it is not always clear 

whether it is best to use viscous or kinetic damping, or 

a combination of the two.

8.6 Materials and details

Material selection for the gridshell diff ers depending 

upon whether the shell is strain ed or unstrained. 

Gridshells have been made from aluminium, concrete, 

steel, wood, bamboo and composite materials. Each 

material has advantages and disadvantages regarding 

strength, ductility, stiff ness, cost, weight and durability. 

Connection and cladding design also inform the 

material choice.

For an unstrained shell, the material should allow 

for curved fabrication and shape retention. In this 

case, fabrication issues mostly drive material selection 

and element shape. Th e elements are produced wit h 

curvature about both transverse axes and twist along 

(a) (b) (c)

Figure 8.10 The form fi nding of the Bridgetown gridshell, based on a square, initially fl at grid with varying point support 
conditions
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be complex and expensive. These considerations apply 

to systems discussed in Chapters 12, 14 and 15.

The advantage of the strained shell lies in the 

fabrication and construction process. The shell is 

made from a series of identical splines, which are 

moulded to shape in their final location on the 

building. Candidate materials are more limited than 

those available for unstrained shells. Locally sourced 

wood is ideal for our project. Wood is capable of being 

bent into shape. Additionally, the stresses induced 

in this process will dissipate. This phenomenon is 

due to visco-elastic relaxation that leads to effective 

timber stiffness reduction under sustained load. This 

long-term load is due to the initial, forced curvature. 

The resulting induced bending stress reduces with time, 

making more capacity available to withstand applied 

loading. Additionally, timber has a very low torsional 

stiffness (ratio of the torsional rigidity to its length); 

the torsional modulus is typically one-sixteenth of the 

elastic-bending modulus. With low stiffness in torsion, 

wood is easily bent to shape in the forming process.

Finger jointing can be used to produce wood laths 

of any length for the strained shell. This technique 

involves cutting wedge-shaped ‘fingers’ in the ends 

of the pieces of wood and gluing them together. 

The procedure is sometimes executed with elaborate 

automated machinery in controlled conditions of 

temperature and humidity. In Barbados, where this 

technique is not available, we propose using skilled 

carpentry using a router table with a special finger-

jointing cutter. To guarantee durability, wood can be 

treated or a naturally durable wood such as oak and 

larch can be chosen. Since environmental sustain-

ability is a crucial design criterion, we must ensure 

that the construction wood comes from sustainable 

sources. In practice, this objective means that for every 

tree removed, a new tree is planted and managed to 

maturity. In this way, wood production (the growth 

of trees) absorbs carbon dioxide into the forest, whilst 

the wood removed is stored carbon in the building.

The connectors, placed wherever the laths intersect, 

must be compatible with the construction procedure. 

The connectors keep the splines in place while allowing 

them to rotate and distort to form the spatial surface, 

during construction. In a multi-layer shell, the layers 

can either be laid out flat and then bent into shape 

together (e.g. the Downland gridshell, Fig. 8.12) or 

Updated coordinates xt+Δt

No

No

Apply load P

Compute axial force F

Compute shear force S

Update residual forces R

Compute nodal velocities vt

START

END

Set kinetic energy KE = 0
and nodal velocities v

t
 = 0

Determine current KE

Previous KE < current

Convergence occurred?

Yes

Yes

Figure 8.11 Flowchart

their length. Due to the element’s twist, as it crosses the 

shell’s surface, circular members are preferred because 

of their ease of fabrication. A wide range of materials 

offer themselves, including, steel, aluminium and 

laminated wood. With joints at every node, individual 

pieces are relatively short, but the nodes are likely to 
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the first two orthogonal layers can be laid out and bent 

to shape, with the further layers positioned over them 

(e.g. the Savill Building, page 88 and Fig. 8.1).

8.7 Gridshell construction

At this point, it is clear that the construction method 

of the shell, whether strained or unstrained, plays a 

major part in producing its stable spatially curved 

shape. The unstrained technique enables off-site fabri-

cation, which reduces time on site. The penalty is 

increased cost in manufacturing different customized 

nodes and node-to-spline connections. The strained 

technique uses a series of simple identical components 

but extends time on site. Often long site duration is 

unacceptable to the client: whilst work proceeds on 

the gridshell, progress on other items is on hold. On 

the Downland gridshell project, the main contractor 

left site for four months, whilst the carpenter worked 

on forming the shell roof. In this project, built for 

the Weald and Downland Open Air Museum, the 

long site construction programme was anticipated 

and accommodated. A viewing platform was made 

and the building construction became a temporary 

museum exhibit. The strained construction technique 

is often not viable if the duration of the site phase of 

construction needs to be minimized.

The forming process for the Downland gridshell 

project, shown in Figure 8.13 started with the scaffold 

construction at the level of the shell hump tops, 

onto which the flat mat of splines was laid out. 

This construction technique is in contrast with the 

Multihalle which used a low-level layout of the flat 

grid, at around 1m from floor level (see Chapters 

12 and 19). This alternative bottom-up technique 

avoids scaffolding, but requires the rather precarious 

use of scaffold towers and forklift trucks. Although 

more scaffolding is needed in laying out the mat at 

Figure 8.12: Downland gridshell, Chichester, UK, 2002, with (top left) western red cedar cladding, (bottom left) housing a 
workshop and (right) detail of connectors
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Figure 8.13 The lowering process for the Downland gridshell

high level in the top-down technique, this method 

is beneficial in a number of ways. First, the shell’s 

perimeter is constructed at both the sides and the 

ends. Having the perimeter in place means that there 

is a clear destination to work towards. Second, it is 

clear that, as the shell is manipulated into shape, it 

does so under gravity. Third, in modern construction 

proper access platforms are needed to work safely 

and effectively at height. These platforms are in place 

from the start. After the lowering process and spatial 
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adjustment to match the form-found shape, the 

gridshell is fixed at its supports and stiffened with a 

prestressed cable network.

8.8 Conclusion

In summary, the immediate value of using the DR 

process for the form finding and load analysis of 

reticulated shells comes from its ability to model 

variations in geometry and stiffness parameters as 

part of the design process. Very accurate geometrical 

information is provided for construction. However, 

physical modelling still has a place in the design 

process, either as initial sketch models or as final 

models to gain a real understanding of how the shell 

loses stability as the loads are increased.

Key concepts and terms

A reticulated, grid- or lattice shell is essentially a 

shell with its structure concentrated into individual 

members in a relatively fine grid compared to the 

overall dimensions of the structure. The wording 

‘lattice’, ‘reticulated’ and ‘grid’-shell are largely 

interchangeable.

A strained gridshell is a curved structural surface, made 

of strong yet flexible laths. These laths are combined in 

a grid and bent. This initial bending action strains the 

shell, hence the term ‘strained’ gridshell.

An unstrained gridshell is a curved structural grid 

surface that is, in its initial state, stress-free (apart 

from stresses due to self-weight).

A spline is, in this context, an initially straight member 

that is bent into a spatial, continuous curve. The word 

‘spline’ originally denoted the flexible wooden or metal 

strip draughtsmen and women used to draw smooth 

ship lines and railway curves.

Dynamic relaxation (DR) was invented by Alistair 

Day in 1965 and is a numerical procedure that solves a 

set of nonlinear equations. Summarized, the technique 

traces the motion of the structure through time under 

applied loading. The technique is effectively the same 

as the leapfrog and Verlet methods, which are also 

used to integrate Newton’s second law through time.

Exercises

The Mannheim Multihalle gridshell (see Sections 

4.3 and 12.4, and 19.1) and the Dutch National 

Maritime Museum (see Chapter 2) are both form-

found gridshells. Compare and contrast these shells 

from a structural and constructional perspective.

How would you approach the form finding of an 

unstrained gridshell such as the Dutch Maritime 

Museum cupola in the dynamic relaxation process?

Form found shapes are highly dependent upon their 

mesh topology. Use DR to find the form of the 

standard grid (Fig. 6.12), only supported at its four 

corners. Generate another input grid with the same 

connectivity but rotated 45° and find the shape. 

What can you say about the two shapes obtained?

The Bridgetown Office of Planning judges that the 

proposed pavilion developed in this chapter is too 

high for its urban context. How can you generate 

a lower shell?

Further reading

‘Tensegrity spline beam and gridshell structures’, 

Adriaenssens and Barnes (2001). This seminal 

journal paper gives the formulation of the spline 

element that accounts for bending.

‘A novel torsion/bending element for dynamic 

relaxation modeling’, Barnes et al. (2013). This 

journal paper expands the capabilities of the 

method presented in this chapter by presenting 

and validating a formulation that accounts for 

torsion and transverse moments of spline elements 

in dynamic relaxation.

‘Design and construction of the Downland 

gridshell’, Harris et al. (2003). This paper, written 

by the design engineers, provides a comprehensive 

discussion of the top-down construction of the 

Downland gridshell.

‘Timber lattice roof for the Mannheim 

Bundesgartenschau’, Happold and Liddell (1975). 

This must be the most comprehensive discussion 

on the engineering design of gridshells. The paper 

discusses how the structure was modelled and 

tested both physically and mathematically and how 

the models were used to determine the construction 

details.
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LEARNING OBJECTIVES

Summarize how particle-spring systems work.
Compare explicit and implicit solving methods.
Discuss the impact of using subdivision 
surfaces for form finding.
Use particle-spring systems for the form finding 
of continuous shells, and discuss the influence 
of ‘hanging’ versus ‘stretched’ models.

architectural design. Indeed, many algorithms and 

digital tools for form finding in architecture use a 

particle-spring framework to simulate hanging or 

pretensioned chains and grids.

The workflow presented here responds to the 

ambitions and complexities of scale, time constraints 

and delivery mechanisms of contemporary architec-

tural and engineering practices. A simulation-based 

workflow is presented that provides intuitive control 

for the designer and that incorporates constraints of 

the production process. This approach adopts subdi-

vision surfaces for parameterization and particle-spring 

systems for form finding. It resolves the dichotomy 

between lower resolution CAD geometry used for 

design and modelling and higher resolution geome-

tries used for subsequent simulation and analysis.

First, we discuss how the definition of 

low-resolution initial conditions are refined using 

subdivision surfaces, offering the designer better 

control of the topology. Second, the resulting mesh 

is then used for the particle-spring form finding. A 

comprehensive mathematical description of particle-

spring systems for structural design is given, including 

the use of explicit and implicit integration to solve for 

static equilibrium. Finally, we offer some details about 

subsequent fabrication and construction.

CHAPTER NINE

Particle-spring systems
Design of a cantilevering concrete shell

Shajay Bhooshan, Diederik Veenendaal and Philippe Block

Physical form finding using hanging chains and 

associated architectural design methods, as exploited 

by Antoni Gaudí, Heinz Isler, Frei Otto and others, 

are very well-established tools for the shape gener-

ation of form-active and form-passive structures, 

appreciated by architects and engineers alike (see 

Chapter 4). Their digital simulation using particle-

spring simulation frameworks is also fairly established 

in practice following the work of early (architectural) 

exponents, Kilian and Ochsendorf (2005). Design 

methods employed in architectural practice for the 

formal and spatial development of geometry rely 

on iterative processes carried out within a relatively 

short timespan. Both properties are found in Particle-

Spring (PS) systems, making them ideally suited to 
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The brief

A canopy structure is to mark the entrance of the 

Computer Science department of the BMS College 

of Engineering in Bangalore, India. A two-week 

time frame for the design and execution, limited 

budget (c. £2,000), and the labour-intensive building 

economy of India are the most significant context and 

constraints for the project. As designers, we opt to 

explore the locally available skills in both tailoring of 

cloth and the use of Ferro-cement. We envision a shell 

structure built using a fabric, stressed within a frame of 

pre-bent steel pipe edges, acting as a guidework for a 

reinforcement net and wire mesh, with hand-rendered 

cement. The entrance area is 5.2m wide and 9.2m long. 

The supports need to be placed within the space.

For our brief, a wide range of low-poly meshes 

is subdivided to explore the design space, based on 

different boundary conditions. Because we wish 

to make use of an economic, lightweight fabric 

guidework and because prestressed fabrics can only 

accommodate anticlastic surfaces, the shell itself must 

be anticlastic. Furthermore, the resulting edges are 

used as fixed boundary conditions for the fabric, and 

thus also for form finding. The particle-spring method 

is perfectly capable of generating hanging models with 

loads and can be applied to other problems as well, 

but within the context of our brief and our chosen 

construction method, the form finding is limited to 

finding a ‘stretched’ surface without any loads applied. 

The anticlastic shell will likely feature bending to a 

degree dependent on the stiffness of the steel pipes, 

as well as the shape, weight and thickness of the shell. 

Considering the extreme thinness and large spans 

Félix Candela was able to achieve with his anticlastic 

hyperbolic paraboloids (see Chapter 20), the degree 

of bending might be a minor concern. Nonetheless, 

some structural analysis might be prudent to check 

whether the reinforced concrete has sufficient capacity.

9.1 Initial conditions

The designer usually models a structure with 

a predominantly quadrilateral, low-poly mesh. 

Designers find low-poly meshes easy to manipulate as 

a low-resolution ‘cage’ controlling a higher resolution 

geometry, allowing them to make global changes to 

form with minimal effort. Due to the malleable nature 

of the low-poly mesh, iterative design studies become 

intuitive and easy to the designer. These iterative 

studies are an integral part of the evolution of the 

design intent whilst working with simulation tools. 

Eventually, the low-poly mesh embeds key features of 

design intent including clearances, touch-down points 

and boundary conditions. In addition, the low-poly 

mesh provides control over topological features such as 

placement of (curvature) singularity points and holes. 

Control over their placement enables the designer to 

place these with regard to the overall tessellation of 

the initial surface.

9.2 Subdivision surfaces

The low-poly mesh is converted into a higher resolution 

mesh (high-poly mesh) using a Catmull-Clark subdi-

vision algorithm (see Appendix D). During this process, 

the original set of faces and edges is subdivided, such 

that for each face a face point is added, and for each 

edge an edge point is added. Their position is an average 

of the neighbouring points. These increased numbers 

of faces and edges are easily tracked on the high-poly 

mesh due to the exponential and algebraic relation of 

their numeric identifiers to those in the original set. 

Further, since these edges originally described closed 

(face) outlines, they can be used to describe boundary 

NURBS patches, which are subsequently exported to 

downstream applications and processes. Figure 9.1 

shows several design variations resulting from form 

finding our subdivided meshes.

Figure 9.2 shows, for the first design of Figure 9.1a, 

the four meshes appearing in the workflow: a low-poly 

mesh, a high-poly, subdivided mesh, the resulting 

form-found mesh and the extracted NURBS patches.

Before selecting a specific design, the next section 

explains in detail how particle-spring form finding 

works.

9.3 Particle-spring method

The principal purpose of the particle-spring method is 

to find structures in static equilibrium. This objective 

is achieved by defining the topology of a particle-

spring network with loads on the particles, the masses 

of the particles, the stiffnesses and lengths of the 
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Figure 9.1 Design variations from PS model for the Bangalore shell, for (a) two, (b) three or (c) four support locations

(a)

(b)

(c)

springs, and then by attempting to equalize the sum 

of all forces in this system. For instance, the gravita-

tional pull on a mass causes the displacement of the 

associated particle and subsequently the elongation of 

the attached springs. Th is elongation creates a counter 

force in the springs and stretching continues unti l the 

sum of the spring forces matches the downward force 

of the mass. Th e motion of the particle is governed by 
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Newton’s second law of motion, and the force in the 

spring by Hooke’s law of elasticity. The following are 

essential assumptions made within a PS form-finding 

framework:

Surfaces are discretized into points and lines. The 

points are nodes with mass and the lines are 

springs connecting them.

Upon applying forces, each node is either free 

to move or fixed in each direction (between 

zero and three degrees of freedom, corresponding 

to between three and zero orthogonal reaction 

forces).

The internal forces (exerted by springs connecting 

the node to other nodes) and external forces 

(gravity and applied loads) act on the nodes. The 

result of all such interactions between nodes and 

springs iteratively leads to a balance of forces on 

each node and overall to an equilibrium shape.

9.3.1 Forces

The physics-based simulation starts from Hooke’s law 

of elasticity,

 f = k  e = k  (l −  l 
0
 ), (9.1)

where f are the forces, k is a stiffness constant, and e 

are the elongations, or the extent of stretching from 

initial, or rest lengths  l 
0
  to the current lengths l. Thus, 

the particle-spring method is used to simulate the 

deformation of bodies.

For a system of m springs and n particles, the m 

spring forces in equation (9.1) can be expressed as 

internal force densities of each spring connecting two 

particles, such that

  q 
e
  = k L −1 (l −  l 

0
 ), (9.2)

where k is the spring stiffness, L and l the diagonal 

matrix and vector of the current lengths, and  l 
0
  

the initial lengths. The subscript e refers to m force 

densities q belonging to elastic forces.

Equations (6.28) and (8.8) describe static 

equilibrium in a network, with n particles and m 

springs, and the residual forces per node in the 

x-direction respectively. We define the n residual 

forces r in our particle-spring network as the sum 

of internal spring and damping forces, and external 

loads. As a function of the particles’ positions x and 

velocities v, and introducing damping force densities  

q 
d
 , the residuals

 r(x, v) =  C  
N
  T
  U q 

e
  +  C  

N
  T
  U q 

d
  +  p 

x
 , (9.3)

where  C 
N
  is the m × n branch-node matrix (see 

Section 6.4.1), U is the diagonal matrix of m coordi-

nates differences in the x-direction,  p 
x
  are the n 

0 509mm

deviation

(a) (b) (c) (d)

Figure 9.2 (a) Low-poly mesh showing design intentions, (b) high-resolution subdivided mesh, (c) form-found result with 
deviations from subdivided mesh and (d) extracted NURBS patches
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external loads acting on the particles, and  q 
d
  are the 

m force densities due to damping forces. Note that, 

in the z-direction, the loads  p 
z
  = mg, and depend on 

the given masses m and gravitational constant g. The 

damping force densities

  q 
d
  = d  L −1 ( L −1 U) C 

N
 v, (9.4)

where d is a given damping coefficient,  L −1 U are the 

direction cosines, and v are the particle velocities. The 

relative velocity of two connected particles is  C 
N
 v.

9.3.2 Motion

To find equilibrium, the method starts from Newton’s 

second law of motion, where for each particle i, the 

unknown acceleration  a 
i
  is a function of the particle’s 

mass  m 
i
  and a net force. In a steady-state solution, the 

net force has to be zero, meaning that any non-zero 

value of force during form finding is called a residual 

force  r 
i
 . For the entire network with n particles, in 

the x-direction, we write Newton’s second law, using 

a diagonal mass matrix M, the residual force vector r 

and vector of accelerations a as

 a =  M −1 r(x, v), (9.5)

which is similar to equation (8.3), but formulated for 

the entire network rather than a single node.

9.3.3 Explicit integration

Given a known initial position x(t) and velocity v(t) 

of the system at time t, our goal is to determine a new 

position x(t + t) and system’s velocity v(t + t) at 

time t + t. We then write

   d __ 
dt

    (   v __ x   )  = (     M −1 r(x, v)
 _________ v   ) . (9.6)

To simplify notation, we define  v 
t
 : = v(t) and  x 

t
  = x(t). 

Furthermore, we use the forward difference form v = 

v 
t+ t

  −  v 
t
  and x =  x 

t+ t
  −  x 

t
 . The explicit forward Euler 

method applied to equation (9.6) approximates v 

and x as

  (   v ___ 
x

   )  = t  (    M −1 r( x 
t
 ,  v 

t
 )
 _________  v 

t
    ) , (9.7)

or, solving for the actual velocity and position,

  (    v 
t+ t

 
 ____  x 

t+ t
    )  =  (    v 

t
  + t M −1 r( x 

t
 ,  v 

t
 )
  _______________  

 x 
t
  + t  v 

t
 
   ) . (9.8)

More commonly, the slightly different, semi-explicit 

Euler method is used, where

  (    v 
t+ t

 
 ____  x 

t+ t
    )  =  (     v 

t
  + t M −1 r( x 

t
 ,  v 

t
 )
  _______________  

 x 
t
  + t  v 

t+ t
 
   ) . (9.9)

The step size t must be small enough to ensure 

stability when using this method. Note that equation 

(9.9) is equivalent to equations (8.6–8.7) for Dynamic 

Relaxation (DR). A minor distinction between the 

two is that DR states the velocity in central difference 

form v =  v 
t+ t/2

  −  v 
t− t/2

 , rather than forward difference 

form.

In this chapter, examples of explicit integration are 

generated using the midpoint method, which starts 

to calculate the acceleration, thus the residual forces r, 

at the intermediate time t + t/2 and position  x 
t+ t/2

 = 

x 
t
  +   1 _ 

2
  t  v 

t
 , to then solve

  (    v 
t+ t

 
 ____  x 

t+ t
    )  =  (    v 

t
  + t M −1 r( x 

t+ t/2
 , v 

t+ t/2
 )
  ___________________  

 x 
t
  +   1 _ 

2
  t( v 

t
  +  v 

t+ t
 )
   ) . (9.10)

This approach requires the calculation of forces or 

positions twice per iteration though, but is more stable 

than Euler integration, allowing larger time steps.

9.3.4 Implicit integration

The use of implicit rather than explicit solvers in 

particle-spring models was presented by Baraff and 

Witkin (1998) and later adopted by Kilian and 

Ochsendorf (2005) for application to structural form 

finding. The implicit backward Euler method approxi-

mates v and x by

  (   v ___ 
x

   )  = t  (    M −1 r( x 
t
  + x,  v 

t
  + v)
  __________________  

 v 
t
  + v

   ) . (9.11)

This formulation appears similar to equation (9.7) for 

the explicit method, but the difference between the 

two is that the forward Euler method’s step is based 

solely on conditions at time t while the backward 

Euler method’s step is written in terms of conditions 

at the end of the step itself, at time t + t. The forward 

method requires only an evaluation of the function 

r, but the backward method requires that we solve 
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for values of x and v that satisfy equation (9.11). 

Equation (9.11) is nonlinear. Rather than solving this 

equation exactly (which would require iteration), a 

Taylor series expansion is applied to r and the first-

order approximation (i.e. Newton–Rhapson’s method) 

is used:

 r( x 
t
  + x,  v 

t
  + v) =  r 

t
  +   ∂r

 __ 
∂x

   x +   ∂r
 __ 

∂v
  v. (9.12)

So, for implicit integration, we now require the deriva-

tives ∂r/∂x and ∂r/∂v, which are evaluated for the state 

( x 
t
 ,  v 

t
 ). These derivatives are non-diagonal matrices, 

with every off-diagonal entry giving the dependency 

of two nodes; they can no longer be calculated 

independently. This is why particle-spring simulation 

is more conveniently expressed here for the entire 

network using matrix notation, and no longer per 

element or node, as was the case in DR (Chapter 8).

Substituting the Taylor approximation, as well as 

x = t( v 
t
  + v) into equation (9.11), then reordering, 

yields the linear system

 (  I 
n
  − t M −1    ∂r

 __ 
∂v

   −  t 2  M −1    ∂r
 __ 

∂x
   ) v =

 t M −1  (  r t  + t   ∂r
 __ 

∂x
   v 

t
  ) , (9.13)

where  I 
n
  denotes an n × n identity matrix. This equation 

is then solved for v. Provided any constraints are 

dealt with procedurally (i.e. enforced at each step), 

equation (9.13) can be transformed to a symmetric, 

positive definite system by multiplying the entire 

equation by M, so that

   ( M − t   ∂r
 __ 

∂v
   −  t 2    ∂r

 __ 
∂x

   )  v = t (  r t  + t   ∂r
 __ 

∂x
    v 

t
  ) , (9.14)

which is simply a system of linear equations, so of the 

form Ax = b.

After solving for v, we then simply compute 

x = t( v 
t
  + v). At this point, we can introduce drag 

to influence motion and thus convergence. Whereas 

damping acts internally on the springs, drag is an 

external effect on the particles. Adding a drag coeffi-

cient b, this becomes

  x 
t+ t

  =  x 
t
  + t(1 − b)( v 

t
  + v) (9.15)

Thus, the backward Euler step consists of evaluating  

r 
t
 , ∂r/∂x and ∂r/∂v; forming the system (9.14); solving 

the system for v; and then updating x and v.

Given a step size t and masses M, we now seek 

the derivatives, ∂r/∂x and ∂r/∂v, in our system, as 

explained in the next section.

9.3.5 Derivatives

For the derivative, or Jacobian matrix, ∂r/∂x, we first 

note that

   
∂ q 

e
 
 ___ 

∂l
   = k L −1  − k L −2 (L −  L 

0
 ) = k L −1  −  L −1 Q, (9.16)

and from equation (6.26) infer that

   ∂l
 __ 

∂u
   =  L −1 U and    ∂u

 __ 
∂x

   =  C 
N
 . (9.17)

Assuming that the derivative of damping forces w.r.t. x 

can be neglected (Choi and Ko, 2002), and that loads 

p are independent of x, the Jacobian matrix is

  
∂r(x, v)

 _____ 
∂x

   =   
 C  

N
  T
  U q 

e
 
 _____ 

∂x
   =  C  

N
  T
    
∂U q 

e
 
 ____ 

∂u
     ∂u

 __ 
∂x

  

 =  C  
N
  T 
    
∂U q 

e
 
 ____ 

∂u
    C 

N
 ,

then using the product rule of differentiation,

 =  C  
N
  T
  (U   

∂ q 
e
 
 ___ 

∂u
   +  Q 

    e 
   ∂u

 __ 
∂u

  ) C 
N
 ,

 =  C  
N
  T
  (U   

∂ q 
e
 
 ___ 

∂l
    ∂l

 __ 
∂u

   +  Q   
e
 ) C 

N
 ,

 = k C  
N
  T
   U 2  L −2  C 

N
 

  −  C  
N
  T
   U 2  L −2  Q    

e
  C 

N
  +  C  

N
  T
   Q    

e
  C 

N
 . (9.18)

The derivative w.r.t. velocities v, ∂r/∂v, is often defined 

in structural form finding with a simple, yet stable 

expression (Choi and Ko, 2002),

   
∂r(x, v)

 _____ 
∂v

   = − dI. (9.19)
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9.3.6 Solving method

We can now, for each direction, construct the system 

of linear equations (9.14) of the form Ax = b; the 

left-hand side matrix A with the derivatives (9.18) 

and (9.19), and the right-hand side vector b using 

equation (9.3).

For small systems, a direct solving method such 

as Gaussian elimination or Cholesky decomposition 

suffices. For larger systems, typical implementations 

as those mentioned in Kilian and Ochsendorf (2005) 

use iterative methods such as the Conjugate Gradient 

Method (CG) or the Biconjugate Gradient Stabilized 

Method (BiCGSTAB). Given that the matrix A is 

symmetric, positive definite, CG is the most appro-

priate (Barrett et al., 1994) and employed by Baraff 

and Witkin (1998). BiCGSTAB, however, is mostly 

used for non-symmetric matrices, and would therefore 

constitute unnecessary overhead in our case.

Alternatively, one can solve the explicit system 

(9.9) using Euler’s method, or increasingly higher 

order methods such as leapfrog integration (Chapter 

8), midpoint method according to equation (9.10) 

or the classic 4 order Runge-Kutta (RK4) (Chapter 

10). Explicit integration does not require solving a 

system of linear equations at each iteration, since 

the matrix  M −1  is diagonal and no Jacobian matrix is 

needed. In other words, the equations per iteration 

can be expressed for each node separately (as in DR). 

Therefore, it is easier and more straightforward to 

implement or start with an explicit method. Generally 

though, implicit methods are deemed more reliable, 

stable (the choice of damping parameters and size of 

the time step are less sensitive) and thus more suitable.

The entire approach is summarized in the flowchart 

in Figure 9.3.

9.4 Manipulation of the results

To explore possible designs for the canopy within the 

workflow, we have three primary tools at hand: the 

control of the boundary conditions, the meshing and 

its topology, and the parameters of the PS system 

(such as spring stiffness, particle mass).

Based on the boundary conditions, the Catmull-

Clark subdivision algorithm used here subdivides a 

low-poly mesh to generate a denser, simulation mesh. 
Figure 9.3 Flowchart for the PS method

No

No

Yes

Yes

START

Define initial conditions
with low-poly mesh

Subdivision to high-resolution
(Catmull-Clark subdivision)

Define particle masses, external
loads, spring stiffness and lengths

Set fixed point
velocities to zero

Calculate residuals forces
from q

e
, q

d
 and p

||r|| < threshold ?

Satisfactory shape?

Generate NURBS
for fabrication purposes

END

Calculate derivatives
r/ x and r/ v

Solve linear system AΔv = b
(Cholesky or CG)

Update velocities v
t+Δt

and update coordinates x
t+Δt

Satisfactory mesh?

Form finding
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Apart from topology, there are two sets of PS param-

eters that contribute significantly to the outcome: rest 

lengths  l 
0
  and the inclusion or exclusion of gravity 

loads p within the simulation. These parameters 

determine whether a model is physically analogous to 

either hanging (high loads), or stretching (high stretch, 

that is, small rest lengths), a cloth.

In a stretched cloth simulation, applied to our brief, 

gravity is usually turned off or set to a very low value 

and the rest-lengths of all the springs are very low 

or set to zero. For such a ‘zero-length spring’, setting 

the spring stiffness becomes identical to prescribing 

a force density for a bar (i.e. it results in solutions 

identical to those from linear FDM). The simulation 

causes the surface to ‘shrink’ in area within the given 

boundary curve. In our examples, all vertices on the 

boundary are fixed and diagonal springs are not used. 

This type of simulation usually produces anticlastic 

geometries, so negative Gaussian curvature appears 

everywhere (Fig. 9.4a). It has to be noted that these 

surfaces appear similar to, but in fact are not, minimal 

surfaces (they are minimal squared length meshes).

In a hanging cloth simulation, the particles are 

allowed to ‘fall’ under the influence of gravity and 

the rest lengths of springs along the boundary edges 

are set to be equal to their original lengths. Further, 

additional diagonal springs with differential strengths 

might be added to ensure that faces do not distort 

significantly during simulation (they suggest some 

shear stiffness of the cloth). Usually, several points 

along the ground are fixed. This type of simulation 

often produces synclastic geometries, so (predomi-

nantly) positive Gaussian curvature (Fig. 9.4b).

9.5 Design development

As mentioned, our design must be of the ‘stretched’ 

kind since we apply a fabric guidework. Therefore, 

all rest lengths  l 
0
  = 0 and external loads p = 0. Both 

the spring stiffnesses and particle masses were set to 

values of 1. Due to constraints of time and resources, 

the foundations for the structure need to be minimal. 

The first design from Figure 9.1a was selected for its 

relative simplicity in both form and boundary condi-

tions. The design features two independent column 

footings 75cm × 75cm × 100cm (Fig. 9.5). The largest 

span of the canopy is 6m with 2m × 2m balanced 

cantilevers on either end of the symmetric structure. 

Figure 9.4: (top) Stretched cloth models result in anticlastic 
shells (hypothetical metro station in Bangalore), while 
(bottom) hanging cloth models result in synclastic shells 
(design entry for innovation centre in China), both designs by 
Zaha Hadid Architects

5.2m

9
.2

m

Figure 9.5 Plan and location of supports and outline of the 
final design
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The footprint of the prototype is 8m × 6m. The 

uniform shell thickness is 8cm. An initial render of 

the design is shown in Figure 9.6.

9.6 Fabrication

The entire construction took place within a span of 

two weeks, with tailoring of the fabric guidework 

taking only a day and a half to complete.

9.6.1 Boundary curves

The canopy’s boundaries are pre-bent steel pipes (Fig. 

9.7). To describe planar arcs and radii for bending, 

a simplified version of bi-tangent arc construction 

and manual reconstruction from given continuous 

three-dimensional NURBS edge curves was used. 

The boundary curves themselves are derived from the 

edges of the original subdivision limit surface. In this 

case, they provided fixed constraint points for the 

relaxation process.

Since the design workflow used a manipulation-

friendly low-poly mesh, it proves to be convenient in 

ensuring that most of the boundary curves are planar 

and do not require a post-rationalization into arcs – if 

boundaries are modelled using only three vertices each, 

the resultant subdivided curve is always planar.

9.6.2 Cutting patterns

The geometry is decomposed into two-dimensional, 

planar patterns to produce the fabric guidework. 

Unfolding into cutting layouts is carried out in 

commercially available tools (Fig. 9.9). The seam lines 

themselves are established by dividing the form-found 

surface along curves of steepest descent. The resulting 

single piece of tailored fabric has to interface with 

other rigid elements only at the boundaries of the 

surface (Fig. 9.8). While stretching this piece of fabric, 

it is allowed to find a natural shape between the fixed 

boundaries, and any tolerance between the physical 

and the simulated geometry is accepted. However, 

compensation is necessary for the discrepancy in the 

unfolded surface area and doubly curved surface area 

as well as bias of the fabric used. This compensation is 

empirically established and an error-correcting direc-

tional scaling factor is used for the cutting patterns.

Figure 9.6 Initial render of the design

Figure 9.7 Placement of bent pipe edge curves

Figure 9.8 Cutting patterns from digital unfolding of the 
form-found surface
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9.6.3 Assembly

The pipes and the guidework have to be assembled 

before laying out the reinforcement steel and wire mesh. 

The fabric-formed and physically form-found surface 

with its seam lines are used as a guide to position the 

reinforcement steel bars (Fig. 9.10). Reinforcement 

consisted of 15mm bars, placed 150mm apart, and 

10mm bars, at 75mm distances. The directions for 

placing these are established by interpolating between 

the tailored seam lines. Once the bars are held in place 

with temporary welds and ties, the mesh is stretched 

across the bars, and the concrete is hand-rendered 

onto the mesh from both sides (see page 102). This 

ensures that the fabric need not be prestressed to 

take the concrete load since the mesh and the rebar 

cage receives most of the load, and further concrete is 

manually applied in layers on either side of the surface. 

As such, the fabric is used very much as a physical 

way to describe complex geometry and not as fabric 

formwork for the concrete.

9.7 Conclusion

In summary, the described workflow is best suited for 

speedy exploration of design-parameter space with 

a qualitative understanding of structural behaviour, 

maintaining an awareness of downstream implica-

tions of design operations, and enabling a reasonable 

A1

A2

A3

A4

A5

A6

A7

A8

A1 A2 A3 A4 A5 A6

B1

B2

B3

B4

B5

B6

B7

B8

Figure 9.9 Installation of fabric guidework

Figure 9.10 On-site fabric guidework with rebar in place

Figure 9.11 (top) Mexico City shell with bent pipe edge 
curves and timber waffle formwork and (bottom) resulting 
concrete shell canopy
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correspondence between high-resolution simulation 

geometry and lower resolution, manipulation-friendly, 

CAD geometries.

This chapter is based on the Hyperthreads 

project, completed in August 2011 as part of the 

AA Visiting School in India (see page 102). The 

workshop was tutored by the first author from Zaha 

Hadid Architects and their Computation and Design 

Group (ZHA|CODE), and was locally supported by 

Abhishek Bij, Design plus India, structural engineers 

CS Yadunandan and Deepak, and with construction 

coordination from BSB Architects India. The workflow 

was applied in the same year to another concrete shell 

canopy, built in Mexico City (Fig. 9.11).

Key concepts and terms

Particle-spring (PS) simulation finds steady-state 

equilibrium by defining a mesh topology for a network 

of lumped masses, called particles (nodes), and linear 

elastic springs (bars), and then by equalizing the sum 

of all forces in the system through motion. Out-of-

balance forces arise due to the stiffness and geometric 

lengths of the springs and gravity loads acting on the 

particles. The solution is often obtained by higher 

order explicit, or by implicit integration.

Explicit integration is the numerical integration of 

differential equations based on known quantities (either 

initial values or from the last computed iteration n). 

The simplest method is Euler’s method. Considering 

the Ordinary Differential Equation (ODE) dy / dt = 

f (t, y), Euler’s method is  y 
n+1

  =  y 
n
  + h  f  ( t 

n
 ,  y 

n
 ), where 

h is the step size.

Implicit integration is integration based on new 

quantities. The simplest method is the backward 

Euler’s method. For the same ODE, the method 

is  y 
n+1

  =  y 
n
  + h  f ( t 

n+1
 ,  y 

n+1
 ). This equation cannot be 

solved immediately, thus requiring fixed-point 

iteration, Newton–Rhapson’s method or similar, in 

each iteration.

Subdivision surfaces are a representation of a smooth 

surface via the specification of a coarser piecewise 

linear polygon mesh. The smooth surface is the limit 

of a recursive process of subdividing each polygonal 

face in the coarse mesh into smaller faces, with each 

recursion better approximating the smooth surface.

Exercises

Consider the single-node problem in Chapter 6. 

Apply particle-spring to the same problem, and 

write the equations to solve for the central node  P 
0
 .

Apply particle-spring simulation to the standard 

grid (Fig. 6.12) using an explicit integration method, 

such as semi-explicit Euler, leapfrog, or midpoint 

integration. What is the difference with dynamic 

relaxation, described in Chapter 8? Attempt the 

example again, but using the implicit backward 

Euler. Compare the speed, number of iterations 

and convergence of both types of integration. We 

can measure convergence as the norm of the 

residual forces at each iteration.

Apply a four-node subdivision surface instead of 

our standard grid and refine it. Manipulate the four 

vertices of the low-poly mesh and vary the level 

of subdivision to change the results of our form-

finding process.

Manipulate the vertices such that they have different 

heights. Vary the rest lengths and particle loads 

and generate a few designs. Under what conditions 

do we obtain either synclastic or anticlastic shapes? 

What is the meaning of using either ‘hanging’ or 

‘stretched’ shapes as the basis for a concrete shell?

Further reading

‘Particle-spring systems for structural form finding’, 

Kilian and Ochsendorf (2005). This seminal paper 

features the early application of particle-spring 

systems to structural form finding in architecture.

‘Large steps in cloth animation’, Baraff and Witkin 

(1998). This journal paper is widely cited within 

the field of cloth animation, and in particular for its 

application of implicit integration methods.

‘Stable but responsive cloth’, Choi and Ko (2002). 

This paper extends the work by Baraff and Witkin 

(1998) by including buckling phenomena, and is 

the source of the simple derivative w.r.t. velocities 

used in many PS implementations.

‘Nucleus: Towards a unified dynamics solver for 

computer graphics’, Stam (2009). This white paper 

describes the inner working of Maya Nucleus’ 

particle-spring model, in particular how constraints 

are handled. In addition to our own implementa-

tions, the design in this chapter was developed 

using Nucleus.
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LEARNING OBJECTIVES

Explain the different form-finding methods 
using a common algebraic notation and data 
structure.
Apply these techniques to the same problems.
Compare and contrast the different methods, 
based on the presentation of their mathe-
matics and subsequent results.
Discuss how to generate loads for different 
types of applications.

In the previous chapters, different numerical form-

finding techniques have been presented to develop 

structurally efficient shapes for shells. The design 

examples might suggest that each method is suited to 

a particular application; the force density method to 

unstrained timber gridshells (Chapter 6), the thrust 

network analysis to unreinforced masonry shells 

(Chapter 7), dynamic relaxation to strained gridshells 

(Chapter 8), and the particle-spring systems to thin 

concrete shells (Chapter 9). This observation leads to 

the obvious question as to how these methods differ 

and whether they can be applied to other structural 

typologies. In this chapter we apply all these methods 

to one simple case using the same data structure 

and linear algebraic presentation, using branch-node 

CHAPTER TEN

Comparison of form-finding 
methods
Diederik Veenendaal and Philippe Block

matrices. This design exercise reveals similarities 

between the methods and provides clues as to how 

these techniques may be adapted to suit our purpose, 

why we may want to choose one over the other, or 

when the choice is arbitrary.

10.1 Form-finding families

Form-finding methods can be categorized in three 

main families:

Stiffness matrix methods are based on using the 

standard elastic and geometric stiffness matrices. 

These methods are among the oldest form-finding 

methods, and are adapted from structural analysis; 

for example, finite element analysis.

Geometric stiffness methods are material 

independent, with only a geometric stiffness. In 

several cases, starting with the Force Density 

Method (FDM), the ratio of force to length is a 

central unit in the mathematics. Later methods are 

often presented as generalizations or extensions 

of the FDM, independent of element type, often 

discussing prescription of (components of ) forces 

rather than force densities; for example, Thrust 

Network Analysis (TNA).

Dynamic equilibrium methods solve the problem 

of dynamic equilibrium to arrive at a steady-state 
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solution, equivalent to the static solution of static 

equilibrium; for example, Dynamic Relaxation 

(DR) and Particle-Spring (PS) systems.

Initially, numerical form-finding techniques were 

developed for form-active, prestressed systems such 

as cable-net roofs. For each form-finding method 

family, at least one technique has been developed for 

the generation of shell shapes. Table 10.1 lists these 

methods by name, abbreviation, first reference for 

the method and first reference applied to shells and 

whether these examples used bar or surface elements 

(line or triangle elements).

For references on triangle formulations for FDM 

and DR, and for additional reading on NSF, URS and 

SSDM applied to shells, see the suggested sources at 

the end of this chapter.

In the following sections, FDM, TNA, DR and PS 

will be applied to develop the shape of a simple shell. 

These methods use a few equivalent or analogous 

terms which the reader should be aware of, summa-

rized in Table 10.2.

10.2 A recipe for form-finding 
algorithms

Every form-finding procedure consists of at least the 

following parts:

1. A discretization to describe the (initial) geometry 

of the shell. The discretization can be made up of 

line elements, or surface elements such as triangles 

or quadrilaterals.

2. A data structure that stores the information on 

the form (geometry), connectivity of the discrete 

elements and forces within the shell.

3. Equilibrium equations that define the relationship 

between the internal and external forces. A shape 

resulting from form finding represents a system in 

static equilibrium. The internal and external forces 

add up to zero. Additional constraints might be 

placed on the equilibrium equations influencing 

how they can be solved numerically.

4. A solver, or integration scheme, which describes 

how the equilibrium equations are solved. If the 

system of equations is nonlinear, one typically 

tries to solve this system incrementally. The solver 

includes stopping criteria and means to measure 

convergence. Applicable solving methods may 

differ in how fast they converge or how stable they 

are, but assuming that they do converge, should 

result in the same solution if the problem and its 

boundary conditions are identical.

Note that for static form-finding methods, one 

generally uses Newton–Rhapson’s method (to linearize 

nonlinear equations) to find static equilibrium and 

in each Newton–Rhapson iteration some direct (e.g. 

Family Name Year Element type 

Stiffness matrix Natural Shape Finding NSF 1974/1999 bar + surface (1992) 

Geometric stiffness Force Density Method FDM 1971/1974 bar + surface (1995) 

Surface Stress Density Method SSDM 1998/2004 surface 

Thrust Network Analysis TNA 2007/2007 bar 

Updated Reference Strategy URS 1999/2001 bar + surface (1999) 

Dynamic equilibrium Dynamic Relaxation DR 1977/1977 bar + surface (1977) 

Particle-Spring system PS 2005/2005 bar 

Table 10.1 Taxonomy of form-finding methods for shells with year of first publication, and first publication in the context 
of shells

FDM, TNA DR PS 

q force density tension coefficient N/A 

 l
0
  N/A initial length rest length 

m branches links springs 

n nodes nodes particles 

Table 10.2 Equivalent terminology in form-finding methods
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Cholesky decomposition) or iterative (e.g. conjugate 

gradients) method to solve a system of linear equations. 

For dynamic methods, one looks towards various 

integration schemes, either explicit (e.g. leapfrog 

integration, classic fourth order Runge-Kutta (RK4)), 

or implicit (e.g. backward Euler) methods.

10.3 Example: a simple inverted 
hanging chain

The simplest example to apply form finding to, in 

the context of shell structures, is that of an inverted 

flexible line, hanging in pure tension under its own 

weight (see also Section 1.1).

Chapter 3 previously addressed analytical formulae 

for this problem. The 1965 Gateway Arch by Eero 

Saarinen (see page 114) was designed using an 

analytical formula (an inverted weighted/flattened 

catenary) rather than an actual hanging chain (whether 

self-weight is the appropriate design loading at 192m 

height is another matter). In this section, numerical 

methods are applied to the discretized form of the 

flexible line, a chain or catenary, to provide insight into 

how these methods work. In our example, the line is 

modelled as an initially horizontal line between simple 

supports, consisting of discrete line elements, and at 

each intermediate node, a vertical load is applied.

10.3.1 Geometry and data structure

The topology of the inverted hanging chain is described 

using the branch-node data structure (see also Section 

6.4.1). The branch-node matrix captures the topology, 

or connectivity, of any bar-node network; it has rows, 

one for each of the m branches; and columns, one for 

each of the n nodes. So, it is a rectangular matrix with 

dimensions m × n. Regardless of the method of form 

finding, we can use this or any type of data structure.

Here, the branch-node matrix is given directly for 

a simple straight line, which has been subdivided into 

six branches. Figure 10.1 shows this simple geometry, 

with nodes labelled using Arabic numerals, branches 

using Roman numerals. The end nodes 6 and 7 are 

considered fixed. The polyline is twelve units long and 

node 3 is at the origin (x, y) = (0, 0). This model will 

be the initial geometry for our form-finding example. 

The direction of the branches can be chosen arbitrarily, 

but here they are chosen such that they go from nodes 

with a lower index to nodes with a higher index.

The branch-node matrix C consists of two 

sub-matrices,  C 
N
  and  C 

F
 , for the free (or non-supported) 

and fixed nodes respectively:

 C =  [  C 
N
   C 

F
  ]  (10.1)

For Figure 10.1, the branch-node matrix is

C =

 
 1 2 3 4 5 6 7

⎡ 1 . . . . −1 . ⎤ I

⎢ 1 −1 . . . . . ⎥ II

⎢ . 1 −1 . . . . ⎥ III

⎢ . . 1 −1 . . . ⎥ IV

⎢ . . . 1 −1 . . ⎥ V

⎣ . . . . 1 . −1 ⎦ VI

   C
N   

C
F

and the coordinate vectors

 x =  [  x 
N
   x 

F
  ]  =   [ −4 −2 0 2 4 −6 6 ]  T ,

 y =  [  y 
N
   y 

F
  ]  =   [ 0 0 0 0 0 0 0 ]  T .

The coordinate differences, vectors u and v, for all m 

branches are a function of C and the coordinates x 

and y:

 u = Cx, v = Cy, (10.2)

so that,

u =

 
⎡ 1 . . . . −1 . ⎤
⎢ 1 −1 . . . . . ⎥
⎢ . 1 −1 . . . . ⎥
⎢ . . 1 −1 . . . ⎥
⎢ . . . 1 −1 . . ⎥
⎣ . . . . 1 . −1 ⎦ 

.

 

⎡ −4⎤
⎢ −2⎥
⎢ −0⎥
⎢ −2⎥
⎢ −4⎥
⎢ −6⎥
⎣ −6⎦

 =  [ 2 −2 −2 −2 −2 −2 ]  T 

 v =  [ 0 0 0 0 0 0 ]  T .

1 2 3 4 5 76

I II III IV V VI

12x
y

Figure 10.1 Geometry for a simple line
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With the diagonal m × m matrices U and V belonging 

to vectors u and v, the branch lengths L can be calcu-

lated using the Pythagorean theorem:

 L = ( U 2  +  V 2  ) 
  1 __ 
2
  
 , (10.3)

where the length vector l is the diagonal of matrix L, 

so

l =   [ 2 –2 –2 –2 –2 –2 ]  T .

At this point, all the initial geometric and topological 

information necessary for form finding is known: the 

coordinates, the lengths and the connectivity.

10.3.2 Force density method

The polyline in Figure 10.1 will now be considered 

as an inverted hanging chain. This means that it 

is subjected to gravitational forces, in the positive 

y-direction. When applying vertical loads p to the 

nodes of the chain, the flexible chain will not be 

in equilibrium in the configuration of Figure 10.1. 

The chain returns to a state of equilibrium if the 

sum of the internal and external forces on each free 

node equals zero. This is expressed in the following 

equilibrium equations,

 p 
x
  −  f 

x 
 = 0,

  p 
y
  −  f 

y
  = 0, (10.4)

where  p 
x
  and  p 

y
  are the horizontal and vertical 

component of the applied loading p, and  f 
x
  and  f 

y
  

the horizontal and vertical component of the internal 

forces of the bars on the nodes.

The internal forces  f 
x
  and  f 

y
  on the interior nodes in 

equation (10.4) are calculated from the branch forces f. 

From Figure 10.2, for example, it can be seen that for 

vertical equilibrium in node 1,

 p 
x,1

  =  f 
x,1 

 =  f 
x,I

  +  f 
x,II 

 =  f 
I
    
 u 

I
 
 __ 

 l 
I
 
   +  f 

II
    
 u 

II
 
 __ 

 l 
II
 
  ,

  p 
y,1

  =  f 
y,1

  =  f 
y,I

  +  f 
y,II

  =  f 
I 
   
 v 

I
 
 __ 

 l 
I
 
   +  f 

II
    
 v 

II
 
 __ 

 l 
II
 
  . (10.5)

The ratios  v 
I
  / l 

I
  and  v 

II
  / l 

II
  are also known as direction 

cosines. For the entire network, the branch forces 

f can be decomposed along x and y direction with 

the direction cosines, written as diagonal matrices 

U L −1  and V L −1 , and then summed to the nodes with 

branch-node matrix  C 
N
 . Equations (10.4) become

 p 
x
  −  f 

x
  =  p 

x
  −  C  

N
  T
  U L −1 f = 0,

  p 
y
  −  f 

y
   =  p 

y
  −  C  

N
  T
  V L −1 f = 0. (10.6)

The loads, prescribed only in the y-direction, repre-

senting gravitational loading,

  p 
x
  = 0,  p 

y
  =   [ 1 1 1 1 1 ]  T . (10.7)

The forces f in the branches are still unknown; FDM 

introduces the force-to-length ratios, or force densities, 

of the branches, q, here set to 1, so

 q =  L −1 f =   [ 1 1 1 1 1 1 ]  T . (10.8)

The equilibrium equations (10.4) can then be rewritten 

as

 C  
N
  T
  Uq =  C  

N
  T
  QCx =  C  

N
  T
  Q C 

N
  x 

N
  +  C  

N
  T
  Q C 

F
  x 

F
  =  p 

x
 ,

 C  
N
  T
  Vq =  C  

N
  T
  QCy =  C  

N
  T
  Q C 

N
  y 

N
  +  C  

N
  T
  Q C 

F
  y 

F
  =  p 

y
 , (10.9)

where Q is the diagonal matrix belonging to q.

These form a system of linear equations (i.e. in the 

linear form Ax = b), because the values Q are given by 

the user. For convenience, we first compute matrices  

D 
N
  and  D 

F
 , from equation (10.1) and Q,

p 
y,1

f 
II

f 
I

v 
II

l 
II

v 
I

u 
II

u 
I

l 
I

x
y

Figure 10.2 Equilibrium in node 1
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  D 
N
  =  C  

N
  T
  Q C 

N 
 = 

⎡ 2 −1 . . .⎤
⎢ −1 2 −1 . .⎥
⎢ . −1 2 −1 .⎥
⎢ . . −1 2 −1⎥
⎣ . . . −1 2⎦

 

(10.10)

  D 
F
  =  C  

N
  T
  Q C 

F 
 = 

⎡ −1 .⎤
⎢ . .⎥
⎢ . .⎥ .
⎢ . .⎥
⎣ . −1⎦

 

(10.11)

Before solving equation (10.9) we invert the matrix  

D 
N
 , using any type of direct or iterative method; for 

example, with Gauss–Jordan elimination used here, or 

Cholesky decomposition used in Section 13.5.1. The 

solution is given directly,

[D
N
 I] = 

⎡ 2 −1 . . . 1 . . . . ⎤
⎢ −1 2 −1 . . . 1 . . . ⎥
⎢ . −1 2 −1 . . . 1 . . ⎥
⎢ . . −1 2 −1 . . . 1 . ⎥
⎣ . . . −1 2 . . . . 1 ⎦

 

[I D    
N
  −1 ] = 

⎡ 1 . . . .   5 _ 
6
     2 _ 

3
     1 _ 

2
     1 _ 

3
     1 _ 

6
   ⎤

⎢ . 1 . . .   2 _ 
3
     4 _ 

3
   1   2 _ 

3
     1 _ 

3
   ⎥

⎢ . . 1 . .   1 _ 
2
   1   3 _ 

2
   1   1 _ 

2
   ⎥

⎢ . . . 1 .   1 _ 
3
     2 _ 

3
   1   4 _ 

3
     2 _ 

3
   ⎥

⎣ . . . . 1   1 _ 
6
     1 _ 

3
     1 _ 

2
     2 _ 

3
     5 _ 

6
   ⎦

Having inverted the matrix  D 
N
 , the coordinates  x 

N
  

and  y 
N
  are calculated,

 x 
N
  =  D  

N
  −1  (  p 

x
  −  D 

F
  x 

F
  ) ,

  y 
N
  =  D  

N
  −1  (  p 

y
  −  D 

F
  y 

F
  ) , (10.12)

so,

 x 
N
  =   [ − 4 –2 0 2 4 ]  T ,

  y 
N
  =   [ 2.5 4 4.5 4 2.5 ]  T .

As previously observed in Section 6.4.4, we notice that 

for given values q, the solution is entirely independent 

of the initial coordinates  x 
N
  and  y 

N
 . One only needs 

to know the location of the supports  x 
F
  and  y 

F
 . The 

solution is shown in Figure 10.3. As expected, the 

resulting shape is a piecewise approximation of a 

parabola, because equal loads are applied at equal 

distances in the x-direction.

Like the catenary, the parabola also presents a 

compression-only arch. The loads, which are evenly 

spaced in the x-direction, may represent an arch that 

is thicker towards the top, or, more plausibly, part of 

a bridge structure with a horizontal, suspended deck. 

Section 10.3.4 discusses shape-dependent loading, 

necessary to obtain a catenary. Figure 10.4b more 

clearly shows, for q = 0.25, that the result matches a 

parabola (green) and deviates from a catenary (red).

Figure 10.4b shows that by varying the force density, 

one obtains a wide variety of arches, scaled versions of 

each other; Figure 10.4a shows that the subdivision of 

the network influences the final result. It is therefore 

(-4,2.5)

0 2 4-2-4

2

6

4

8

Figure 10.3 The resulting solution from the force density 
method for evenly spaced loads, with  p y  = 1, force density, 
with q = 1

m = 20

m = 2

(a)

q = 0.25

q = 2

(b)

Figure 10.4 (a) Influence of number of branches m on the 
final result, and (b) influence of parameter q compared to a 
parabola (green) and a catenary (red)

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


120   DIEDERIK VEENENDAAL AND PHILIPPE BLOCK

difficult to fully control the size and scale of the final 

shape purely with these parameters, and it might 

thus be necessary to include a control mechanism, 

either through a user-interactive model in which 

these parameters can be varied and their influence 

assessed, or a constrained optimization method in 

which additional constraints such as a target height, or 

maximal or specified lengths are introduced.

Changing the value of each individual force density 

effectively changes the distribution of the nodes in the 

final shape and the relative distribution of forces in 

the branches. Generally, higher force densities mean 

that higher forces are attracted, but since the branch 

lengths also change, the overall impact of changing 

force densities is hard to anticipate. Let us randomly 

select force densities,

 q =   [ 1 4 2 0.5 0.25 0.25 ]  T , (10.13)

which, for the same loads p, results in coordinates,

 x 
N
  =   [ − 4.98 − 4.72 − 4.21 − 2.17 1.91 ]  T ,

  y 
N
  =   [ 3.68 4.35 5.19 6.55 5.28 ]  T . (10.14)

Figure 10.5 compares this result with the one we first 

obtained in Figure 10.3.

10.3.3 Thrust network analysis

The solutions in Figures 10.3 and 10.5 are the unique 

results for the chosen force densities q and the given 

loads p. It is difficult, though, to anticipate the outcome 

of most given values for q and p. TNA controls the 

force density values by choosing a fixed horizontal 

projection of the solution and by manipulating the 

reciprocal force diagram   * , that is, the horizontal 

force components, or thrusts, in the branches. This 

approach alleviates the problem of having to decide on 

force density values directly. Note that in this example 

the reciprocal   *  consists of just one branch (or more 

correctly, all branches coincide), which corresponds to 

the constant horizontal thrust H in a funicular arch 

under vertical loading. Figure 10.6 shows that a single 

force polygon is equally valid for different results, but 

that the horizontal projections are different.

Figure 10.5 Influence of force densities on final result and 
corresponding force polygon

 *

 *

L

L
H

L
H

L

L*
H

L*

L*
H

L*

Figure 10.6 Two possible forms associated with the same 
funicular force polygon   * 

Recall from Section 7.3.3, that the force densities 

can be written as the ratios of branch lengths of the 

force and form diagrams, while introducing a scale 

factor 1/r,
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 q =  L −1 f =  L −1  l *  =   1 __ r   L  
H
  −1  l  

H
  *

  . (10.15)

Consider that because the horizontal thrust  f 
H
  = 1/r   

l  
H
  *

   is the same in both examples in Figure 10.6, the 

force densities q are determined by  l 
H

 ; in other words, 

the horizontal spacing of the nodes. The choice of a 

unique spacing thus leads to an independent set of 

force densities q =   1 _ r  t.

Assuming a given horizontal spacing with  x 
N
  – for 

example, from equation (10.14) – and computing 

coordinate differences u using equation (10.2), then, 

from equation (10.3), but ignoring the vertical 

y-direction, the horizontal lengths

 L 
H
  = |U|

 = 

⎡ 1.02 . . . . . ⎤
⎢ . 0.26 . . . . ⎥
⎢ . . 0.51 . . . ⎥
⎢ . . . 2.04 . . ⎥
⎢ . . . . 4.09 . ⎥
⎣ . . . . . 4.09 ⎦  

 (10.16) 

Then, given a horizontal thrust  l  
H 

  *
   = 1.02, and a scale 

factor r = 1, the force density proportions t are known,

q =   1 __ r    L −1  l  
H
  *

  

 = 

⎡   1
 

___ 1.02   . . . . . ⎤ ⎡ 1.02 ⎤
⎢ .   1

 
___ 
0.26

   . . . . ⎥ ⎢ 1.02 ⎥
⎢ . .   1

 
___ 
0.51

   . . . ⎥ ⎢ 1.02 ⎥
⎢ . . .   1

 
___ 
2.04

   . . ⎥ ⎢ 1.02 ⎥
⎢ . . . .   1

 
___ 
4.09

   . ⎥ ⎢ 1.02 ⎥
⎣ . . . . .   1

 
___ 
4.09

   ⎦ ⎣ 1.02 ⎦  

 =  [ 1 4 2 0.5 0.25 0.25 ] T. (10.17)

In this case, the result is the same as equation (10.13), 

but now obtained from a given horizontal projection 

and thrust, rather than directly prescribed with force 

densities.

Factor r echoes the observation from Figure 10.4a 

that the force density solutions for the same vertical 

loading are simply scaled versions of one another. 

However, r might be more intuitive, as higher values 

of r (as opposed to lower values of q), lead to higher 

arches (Fig. 10.7).

Following the same procedure as in Section 7.3.3, 

we replace the force densities in equation (10.9), with 

those of equation (10.15) to obtain the following 

equilibrium equation in the y-direction:

  C  
N

  T  
  T C 

N
  y 

N
  +  C  

N
  T  
  T C 

F
  y 

F
  = r p 

y
 . (10.18)

Solving for the unknown  y 
N
 , the resulting equation is 

the equivalent to equation (7.12):

  y 
N
  =  D  

N
  −1   (  p 

y
  r −  D 

F
  y 

F
  ) . (10.19)

For r = 1, the result is the same as equation (10.14). 

Figure 10.7 shows the influence of varying scale 

factor r, noting that in each case the horizontal branch 

lengths indeed remain constant.

r = 0.5

r = 1

L

L

r = 2

L
H

L

L*

 * 

r = 0.5r = 1r = 2

L*
H

L*
H

L*
H

Figure 10.7 Influence of scale factor r on the final result
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This example shows how TNA works in principle: 

it uses manipulation of projected form and force 

diagrams to explore funicular shapes that are in static 

equilibrium, under given vertical loads.

10.3.4 Shape-dependent loading

The previous examples assumed a constant load  p 
y
  = 1. 

However, if the load is the self-weight of the chain, 

then the load is dependent on the geometry:

  p 
y
  =   1 __ 

2
   gA| C 

N
  | T  l, (10.20)

where  is the density in kgm-3, g = 9.81Nkg-1, the 

gravitational constant, and A the sectional area of the 

chain in m2 (here assumed constant, because we are 

looking to model a catenary).

Starting from the original line in Figure 10.1, the 

initial geometry has constant branch lengths and, 

therefore, p will still be constant. This means that 

an iterative procedure has to be introduced. At each 

step, the lengths l have to be recalculated with new 

coordinates from equation (10.12), using equations 

(10.2–10.3). The new loads  p 
y
  after the first iteration, 

using gA = 1/2, change to

 p 
y
  =   1 __ 

2
      1 __ 
2
   

⎡ 1 1 . . . .⎤
⎢ . 1 1 . . .⎥
⎢ . . 1 1 . .⎥
⎢ . . . 1 1 .⎥
⎣ . . . . 1 1⎦

 

 

⎡ 3.20 ⎤
⎢ 2.5 ⎥
⎢ −2.06 ⎥
⎢ −2.06 ⎥
⎢ −2.5 ⎥
⎣ −3.20 ⎦

 =  [ 1.43 1.14 1.03 1.15 1.43 ]  T . (10.21)

To determine convergence, the so-called out-of-

balance, or residual, forces have to be calculated at 

each step. Using equations (10.9–10.19), the residual 

forces are

  r 
x 
  =  p 

x
  −  D 

N
  x 

N
  −  D 

F
  x 

F
 

  =   [ 0 0 0 0 0 ]  T ,

  r 
y
  =  p 

y
  −  D 

N
  y 

N
  −  D 

F
  y 

F
 

 =   [ 0.43 0.14 0.03 0.15 0.43 ]  T . (10.22)

The procedure converges when the norm of the 

residuals is less than a tolerance . The final result 

is no longer in static equilibrium, but within the 

prescribed tolerance, at which it is considered ‘close 

enough’. Then, with = 0.01, the following condition 

can be checked:

  ‖ r ‖  <  →  ‖ r ‖  = 0.63>0.01. (10.23)

The solution is not in equilibrium. A new iteration 

with the new loads p, using equation (10.12), then 

leads to new coordinates, after which equations 

(10.20–10.23) can be repeated. In this case, equation 

(10.23) is satisfied after five iterations (Fig. 10.8a). 

The final shape is still dependent on the chosen force 

density q and discretization of m branches for the 

scale of the resulting shape, but the variation in force 

densities will no longer yield shapes other than a 

catenary, such as previously was the case (Fig. 10.5). 

Figure 10.8a shows the resulting catenary (in black), 

the first iteration (in blue) which is the parabola from 

Figure 10.3, and the three intermediate iterations (in 

grey). Figure 10.8b gives a steeper result from q = 0.55 

to more clearly show that the result is a catenary 

(compare to Figure 10.4).

In Figure 10.8 we observe that for vertical loads, 

even when updated, the nodes move only in the vertical 

direction. This illustrates the possible decoupling of 

horizontal and vertical equilibrium that TNA exploits.

10.3.5 Constant length chains

If we wish to design an arch where the segments are 

of constant length, the previous approaches need to be 

changed. In a reversal of the previous section, we now 

know the loads in advance as a function of constant, 

prescribed lengths  l 
P
 ,

  p 
y
  =   1 __ 

2
   gA| C 

N
  | T   l 

P
 , (10.24)

whereas the projected, horizontal lengths  l 
H
  will vary 

as the nodes are expected to move in the horizontal 

direction as well in order to maintain constant 

lengths along the arch. Given the diagonal matrix 

of prescribed lengths  L 
P
 , we update the current force 

densities at iteration i, using the diagonal matrix of 

current lengths  L 
i
 , so that
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  q 
i+1

  =  L  
P
  −1  L 

i
  q 

i
 . (10.25)

The constant loads in equation (10.24) then result in a 

catenary shape shown in Figure 10.9. If, however, the 

loads are based on the horizontal projection, that is, 

lengths  l 
H
 , then the loads are updated at each iteration 

with

  p 
y,i

  =   1 __ 
2
   gA| C 

N
  | T  l 

H,i
  , (10.26)

resulting in a parabola instead. It is not uncommon in 

form finding to approximate loads using the geome-

try’s projection. For very steep geometries the degree 

of approximation may be considerable, as shown in 

Figure 10.9b.

10.3.6 Dynamic relaxation

Dynamic relaxation solves the problem of dynamic 

equilibrium to arrive at a steady-state solution. This 

solution is equivalent to that of static equilibrium. The 

first difference from previous methods is the definition 

of the force densities q, or tension coefficients, which 

now includes initial forces  f 
0
 , an axial stiffness EA, with 

Young’s modulus E and initial lengths  L 
0
 . Assuming 

EA = 1 and  f 
0
  = 1, initially we obtain:

 q =  L −1 f =  L −1   (  f 0  + EAe ) 

 = [   1 _ 
2
     1 _ 

2
     1 _ 

2
     1 _ 

2
     1 _ 

2
     1 _ 

2
   ] , (10.27)

where strains e =  ( L −  L 
0
  )  l  0  −1 .

q = 0.55q = 1

(a) (b)

Figure 10.8 (a) Iterations of shape-dependent force density solution for q = 1, and (b) solution for q = 0.55 fitted to a parabola 
(green) and a catenary (red)

(a) (b)

m = 20m = 6

Figure 10.9 Constant lengths with prescribed loads lead to a catenary (black) or with updated, projected loads lead to a 
parabola (blue), respectively for (a) a shallow arch with six branches or (b) a steep arch with twenty branches
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Considering that the form finding now assumes a 

physically meaningful initial geometry with lengths  

L 
0
 , and elastic deformation during form finding, we 

adapt the loads in equation (10.20) to keep the total 

mass constant:

  p 
y
  =   1 __ 

2
   A∥ C 

N
  ∥ T   l 

0
  =   [ 1 1 1 1 1 ]  T . (10.28)

These loads are no longer shape dependent as they 

are a function of the initial length  l 
0
 , and remain the 

same at each step. They can be calculated only once. 

The residual forces r are still calculated using equation 

(10.22) at each step. Note that this is analogous to 

equation (8.8) but formulated for the entire network 

instead of one node. As in equation (8.3), using 

Newton’s second law, and combining equations (10.22, 

10.27, 10.28) (notice that the tension coefficients q are 

half the value of the example in Section 10.3.2), the 

residual forces on the nodes in the y-direction,

  r 
y
  =  p 

y
  −  D 

N
  y 

N
  −  D 

F
  y 

F
 = (10.29)

=  [ 1 1 1 1 1 ]  T 

 = Ma, (10.30)

where M is a diagonal mass matrix belonging to the 

mass vector m and a is the nodal acceleration vector. 

Applying equation (8.4) to the entire network, we 

obtain

 m =   1 __ 
2
   t   |  C 

N
  |  T   (  L −1  f 

0
  +  L  

0
  −1 EA )  (10.31)

 =   [ 1 1 1 1 1 ]  T .

Each node now accelerates as a function of the 

residual force and its mass. Its initial velocity for the 

first iteration is zero. For each subsequent iteration, 

the velocities are updated. As discussed in Chapter 

8, the resulting movement will oscillate around a 

steady-state solution unless some form of damping 

is discussed, in our case viscous damping. Following 

equation (8.9), and assuming a constant damping 

factor C = 0.5 for the entire structure and time step 

t = 1, the velocities

  v 
y,t+ t/2

  = A   v 
y,t− t/2

  + B  t   M −1  r 
y
  (10.32)

 = 0.6  

⎡0 ⎤
⎢0⎥
⎢0⎥
⎢0⎥
⎣0⎦

 + 0.8  1  

⎡  1 _ 
1
   . . . . ⎤

⎢.   1 _ 
1
   . . . ⎥

⎢. .   1 _ 
1
   . . ⎥

⎢. . .   1 _ 
1
   . ⎥

⎣. . . .   1 _ 
1
   ⎦

 

⎡1 ⎤
⎢1⎥
⎢1⎥
⎢1⎥
⎣1⎦

 =   [ 0.8 0.8 0.8 0.8 0.8 ]  T .

Thus, following equation (8.7) the coordinates

  y 
t+ t

  =  y 
t
  + t   v 

y,t+ t/2
  (10.33)

 = 

⎡0 ⎤
⎢0⎥
⎢0⎥
⎢0⎥
⎣0⎦

 + 1  

⎡0.8 ⎤
⎢0.8 ⎥
⎢0.8 ⎥
⎢0.8 ⎥
⎣0.8 ⎦

 =   [ 0.8 0.8 0.8 0.8 0.8 ]  T .

Again, these are equivalent to equations (8.7) and 

(8.9), but for the entire network, so expressed as 

vectors of size  n 
N
 . Figure 10.10 shows that the result 

converged after eighteen iterations. The first iteration 

corresponds to the coordinates calculated above in 

equation (10.33).

Figure 10.10 Iterations of DR

Increasing the stiffness EA, means shallower arches 

(Fig. 10.11a). The general solution is independent of 

the meshing, except for its impact on the accuracy of 

the solution (Fig. 10.11b).
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The numerical advantage of this solving procedure, 

called leapfrog integration, similar to Verlet 

integration, is that because the mass matrix M is a 

diagonal matrix (i.e. all off-diagonal entries are zero), 

the inversion  M −1  does not require a costly calculation, 

as is the case for the non-diagonal stiffness matrix  

D  
N
  −1  (compare equations (10.11–10.12) and (10.32)). 

More simply put, each nodal force vector is divided by 

the corresponding nodal mass, according to equation 

(8.9), and one can express the method entirely in 

equations per element, and per node. This is also 

why DR has been called a vector-based method. As 

a result of all this, DR generally requires more itera-

tions to solve a problem, but the cost per iteration 

is lower. For very large problems, the inversion of 

a matrix can no longer be calculated via direct 

(decomposition) methods, but require more costly 

iterative methods (e.g. conjugate gradient methods), 

meaning iterations within iterations. Such methods 

may still outperform DR, but their implementation 

is obviously more involved.

10.3.7 Spline elements

Up to this point we have described DR in traditional 

form. We now add the spline elements discussed in 

Chapter 8 for the application to strained lattice shells. 

The nodal values for the bending moments  M 
b
  can be 

calculated from the prescribed bending stiffness EI 

and assuming direction and radii of curvature R have 

been calculated:

  M 
b 
 = EI   R −1 . (10.34)

Equilibrium equations (10.9) have additional forces as 

a function of the bending moments  m 
b
 :

  p 
x
  −  f 

x
  =  p 

x
  −  C  

N
  T
  QCx −  C  

N
  T
   L −1 C m 

b,x
  = 0,

  p 
y
  −  f 

y
  =  p 

y
  −  C  

N
  T
  QCy −  C  

N
  T
   L −1 C m 

b,y
  = 0. (10.35)

Figure 10.12 illustrates the influence of the dimen-

sions of a square cross section on the previous example 

(Fig. 10.11a) with one that includes spline elements. 

As the size of the cross section increases by a factor 2.5, 

the axial stiffness EA increases by 2.52 = 6.25, but the 

bending stiffness EI by 2.54 ≈ 39. The results of Figure 

10.12a model gridshells with equal initial lengths and 

only axial strain, suggesting hinged connections that 

are fixed in the final state. Figure 10.12b represents 

gridshells that are bent into place from an initially flat 

configuration.

(b)

m = 2

b = h = 2.5

(a)

b = h = 1 m = 20

Figure 10.11 (a) Influence of dimensions b=h and (b) 
influence of number of branches m on the final result

(a) (b)

b = h = 2.5 b = h = 2.5

b = h = 1 b = h = 1

Figure 10.12 Influence of dimensions b=h for DR (a) 
without spline elements, and (b) with spline elements

10.3.8 Particle-spring system

Another dynamic method is the particle-spring system 

(PS). It is in many respects similar to DR, but distinct 

nonetheless in how the branch forces and masses are 

defined, and the solvers that are employed. In this 

method, the branches are seen as weightless springs. 

The nodes are called particles. The forces in the springs 

depend on a spring constant, or spring stiffness,  k 
s
 , 

and a rest length  L 
0
 . Additional damping forces are 

dependent on the damping coefficient  k 
d
 , and the 

relative velocity of the end points along the direction 

of the spring. In the y-direction,

  q 
y
  =  k 

s
  L −1  ( l −  l 

0
  )  +  k 

d
  L −2 V  v 

y
 , (10.36)
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where V is the diagonal matrix of coordinate differ-

ences, and the relative velocities  v 
y
  of the end points 

along the direction of the spring are:

  v 
y
  =  C 

N
  v 

y
 . (10.37)

Comparing equations (10.36) to (10.27) we note 

that  k 
s
  is analogous to EA/ L 

0
 . However, it is possible 

in PS to define  L 
0
  = 0, leading to so-called zero-

length springs. Furthermore, we notice that when 

arriving at a steady-state solution, the second term 

will disappear as the velocities become zero. We 

also see that if rest length  L 
0
  = 0, then  k 

s
  will lead to 

a constant force density. In that case we expect to 

obtain a parabola.

Equation (10.29) from DR, concerning the residual 

forces and Newton’s second law, remains valid for PS. 

A drag coefficient b is also added, either by replacing 

equation (10.32) in the form of drag:

  v 
y,t+ t/2

  =  v 
y,t− t/2

  + t   M −1  (  r y  − b   v 
y,t− t/2

  ) , (10.38)

  y 
t+ t 

 =  y 
t
  + t   v 

y,t+ t/2
 , (10.39)

or equation (10.33) as a reduction of the velocities:

  v 
y,t+ t/2

  =  v 
y,t− t/2

  + t   M −1  r 
y
 , (10.40)

  y 
t+ t

  =  y 
t
  + t   ( 1 − b )    v 

y,t+ t/2
 . (10.41)

The loads p are a function of the prescribed masses m 

and gravitational constant g:

  p 
y
  = mg. (10.42)

At this point, we note that PS, unlike DR, typically 

applies more advanced integration methods, such 

as the explicit RK4 or the implicit backward Euler 

methods. The former, explained here, starts with the 

original ‘prediction’ for the acceleration a =  k 
1
 , but then 

makes additional predictions at different time steps 

using new calculations of the residual forces before 

interpolating all four results for a final, more accurate 

prediction for the new geometry:

  v 
y,t+ t/2

  =  v 
y,t− t/2

  +   1 __ 
6
    (  k 

1
  + 2 k 

2
  + 2 k 

3
  +  k 

4
  ) , (10.43)

where

 f  ( t,y )  =  M −1 r ( t,y ) 

  k 
1
  = t  f  ( t, y 

t
  ) 

  k 
2
  = t  f   ( t +   1 _ 

2
  t, y 

t
  +   1 _ 

2
   k 

1
  ) 

  k 
3
  = t  f   ( t +   1 _ 

2
  t, y 

t
  +   1 _ 

2
   k 

2
  ) 

  k 
4
  = t  f   ( t + t, y 

t
  +  k 

3
  ) ,

Figure 10.13 The first, every tenth and final iteration for PS 
with RK4

Figure 10.13 shows the result from PS with RK4 after 

sixty iterations (tolerance =0.01), which requires 

many more iterations than DR. The parameters are  

k 
s
 =1,  k 

d
 =0.1, b=0.1, g=10, t=0.1. In this case, the 

process was underdamped, with the intermediate itera-

tions moving beyond the equilibrium solution. Recall 

that PS originally came from the field of computer 

graphics and animation, in which iterations are a 

necessity to show any type of animated progression. 

Changing the parameters may increase convergence, 

but certain values may lead to divergence. This is 

why more stable strategies such as backward Euler 

allowing larger time steps and/or adapting the time 

step during form finding have been combined with PS. 
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For very large problems, such advanced Runge-Kutta 

methods outperform simple leapfrog integration.

10.4 Summary

Now that we have applied all the methods to the 

same case of a certain initial geometry, we attempt to 

discern their differences. As a start, we recapitulate the 

values that the user must or may supply. The properties, 

which are independent of the chosen method and 

need to be provided, are:

coordinates of the supports;

topology, connectivity of the network;

prescribed loads p (or mass densities for shape-

dependent loading);

convergence tolerance (for iterative methods).

Table 10.3 shows the values that need to be prescribed 

by the user for each method.

The input for FDM and TNA is reduced to a bare 

minimum. This is an advantage, though as discussed, 

force densities are physically not meaningful and 

therefore difficult to control. Methods such as TNA 

attempt to indirectly determine the force densities 

through interactive control of (horizontal components 

of ) forces, or through additional constraints (e.g. a 

best fit to a predefined target surface, see Chapter 13).

The drawback of dynamic methods, such as DR 

and PS, in this respect is the much larger number of 

parameters necessary for their control. However, in DR 

these parameters – for example, EA, EI,  L 
0
  – are either 

fictitious values, chosen for their effect on convergence 

or on the resulting shape, or they are related to the 

material and physical properties of a structure. The 

latter is similar to conventional approaches in struc-

tural analysis based on the displacement, or stiffness, 

method. DR may therefore seem more familiar, and 

easier to comprehend and implement than purely 

geometric methods. In the case of real values, DR can 

also be used for static analysis directly (see Appendix 

A). Of course, this assumes that these properties are 

known or requires them to be.

Table 10.4 shows a summary of the equilibrium 

equations for each method. In the table, we can 

identify external forces, axial forces (controlled either 

by force density, elasticity or spring action), shear 

forces (for splines) as well as damping and drag forces 

(in PS).

From Table 10.4, we can conclude that the damping 

strategy of DR and PS is entirely interchangeable, as 

this only influences speed of convergence, not the 

final solution at which velocities are zero. Also, if  k 
s
  =  

EA   l  
0
  −1 , DR and PS should yield the same solution. 

One can also easily implement spline elements in PS. 

More generally, if the force densities in each method 

Method User-prescribed quantities SI Unit 

FDM force densities q Nm-1

TNA projected coordinates x m

thrust distributions (from)  x
* N=m

scale factor r -

DR axial stiffness EA  Nm-2m2=N 

bending stiffness (for splines) EI  Nm-2m4=Nm2

initial coordinates, or lengths  L
0
  ( x,y )   m 

damping factor (for viscous damping) C - 

time step Δt s 

PS spring stiffness  k
s
  Nm-1 

initial coordinates, or rest lengths  L
0
  m

damping coefficient  k
d
  -

drag coefficient b -

time step Δt s

Table 10.3 Comparison of user input per method
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are defined in the same way, then they should also 

yield identical shapes. Because the forces f and actual 

lengths l are known after form finding, one can 

calculate initial lengths  l 
0
  for any given axial stiffness 

EA (or conversely, determine the axial stiffnesses for 

given  l 
0
 ):

  l 
0
  = EA  L  ( f + EA1 )  −1 . (10.44)

Equation (10.44) demonstrates how results from 

FDM are typically ‘materialized’ for subsequent struc-

tural analysis of different load cases. This also means 

that whether our form-finding result was obtained 

through FDM, DR or some other method, the material 

properties or initial lengths can be varied without 

disturbing shape and static equilibrium as long as f and 

l are kept the same. Of course, the choice of material 

and dimensioning will influence how the structure 

behaves due to different load cases and second-order 

effects (e.g. bending, deflection, buckling).

Table 10.5 summarizes the solving strategy per 

method, with TNA being a special case FDM. As 

discussed, FDM can be formulated as a system 

of linear equations if the force densities q do not 

change per iteration (as would be the case for 

shape-dependant loading). The dynamic equilibrium 

methods show the different approach in solving for 

equilibrium, though some similarity is noticeable 

with the stiffness matrix  D 
N
  being analogous to the 

diagonal mass matrix M.

10.5 Conclusions

At the start of this chapter, the following questions 

were posed:

How do the form-finding methods presented in 

this book differ?

In what cases does one choose a particular method?

Can they be applied to other structural types?

The methods differ in two main respects: how the 

internal forces are defined, and how the resulting 

problem is numerically solved.

The definition of the internal forces depends on 

what information on the design is available to the 

Method Equilibrium equations Force densities 

FDM  r
y
  =  p

y
  −  C  

N
  T
  QCy q prescribed 

TNA  r
y
  = r p

y
  −  C  

N
  T
  TCy t =   1 _ r   L  

H
  −1  l  

H
  *
   

DR  ry
  =  p

y
  −  C  

N
  T
  QCy q =  L

−1

 f

f =  f
0
  + EA ( L −  L

0
  )  l  0  

−1 

DR (with splines)  r
y
  =  p

y
  −  C  

N
  T
  QCy −  C  

N
  T
   L

−1

 C mb,y 
PS  ry  =  py  −  C  

N
  T
  QCy − b ∙  vt−Δt/2 q =  L

−1

 f 

 fy  =  ks  ( l −  l
0
  )  +  kd  L

−1

 ΔV vy 

Table 10.4 Equilibrium equations in the y-direction per method

Method Solving 

FDM (nonlinear)  y
N,i+1

  =  y
N,i  +  D  

N
  −1  r

y
  

FDM (linear)  =  y
N,i  +  D  

N
  −1  (  −  D

N
  y

N,i
  −  D

F
  y

F
  ) 

=  D  
N
  −1  (  −  D

F
  y

F
  )  

DR (leapfrog)  vy,t+Δt/2
 =  v

y,t−Δt/2
  + Δt ∙  M−1

  r
y
 

 y
t+Δt

 =  y
t
  + Δt ∙  v

y,t+Δt/2
 

PS (RK4)  vy,t+Δt/2
  =  v

y,t−Δt/2
  +   1 __ 

6
   (  k

1
  + 2 k

2
  + 2 k

3
  +  k

4
  ) 

 y
t+Δt

  =  y
t
  + Δt ∙  v

y,t+Δt/2
  

Table 10.5 Solving strategy per method

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


CHAPTER TEN: COMPARISON OF FORM-FINDING METHODS   129

designer. Either one manipulates force densities to 

explore states of equilibrium, or one has information 

on the initial geometry and/or material properties, 

which are then deformed into shape. This seems to 

be the main distinction and reason for choosing a 

particular method.

The particular solver should be of less interest 

as long as it ensures convergence towards static, or 

steady-state, equilibrium. Only for very large problems, 

or for other reasons that fast and stable convergence 

are paramount, will they require further consideration.

We have seen that once an equilibrium state is 

found, material or physical properties can be changed 

repeatedly without disturbing shape or equilibrium. 

This fact, combined with the ability to manipulate the 

internal forces (through force density, elastic stiffness 

or spring stiffness, as well as loading), suggests that 

these methods are theoretically interchangeable.

Nevertheless, cases in which any compression-only 

shape of static equilibrium is acceptable are more 

efficiently tackled through purely geometric methods 

(e.g. FDM and TNA), whereas cases in which initial 

geometry and subsequent deformation have meaning 

and material properties are known, a method such 

as DR is straightforward and more appropriate. The 

explicit integration schemes in DR and PS also avoid 

any need for matrix algebra (solving a linear system, 

inverting a matrix), which may be an advantage in 

terms of simple implementation.

Further reading

‘An overview and comparison of structural form 

finding methods for general networks’, Veenendaal 

and Block (2012). This journal paper compares 

form-finding methods for the general case of 

discrete, self-stressed networks. It includes other 

methods as well, such as the stiffness matrix 

method, the assumed geometric stiffness method 

and the updated reference strategy.

‘Computer shape finding of form structures’, Meek 

and Xia (1999). This paper applies elastic bar 

elements to the form finding of thin shells.

‘The natural force density method for the shape 

finding of taut structures’, Pauletti and Pimenta 

(2008). This paper gives a triangle element for 

FDM. An alternative, but identical, description 

given by Singer (1995) in his German dissertation 

‘Die Berechnung von Minimalflächen, Seifenblasen, 

Membrane und Pneus aus geodätischer Sicht’.

‘Concrete shells form-finding with surface stress 

density method’, Maurin and Motro (2004). This 

paper offers an alternative triangle formulation, applied 

specifically to the form finding of shell structures.

‘Dynamic relaxation applied to interactive form 

finding and analysis of air-supported structures’, 

Barnes and Wakefield (1984). This paper is a more 

recent source for triangle elements in DR, which 

Barnes already described in his 1977 dissertation.

‘Structural optimization and form finding of light 

weight structures’, Bletzinger and Ramm (2001). This 

paper explains URS specifically in terms of tensioned 

membranes and minimal surfaces, but discusses the 

approach in a broader context of hanging models 

and shape optimization of shell structures.

Exercises

FDM and TNA both use the branch-node matrix 

C. Implement DR (without spline elements) 

and PS for the standard grid (Fig. 6.12), using 

the branch-node matrix C obtained in previous 

exercises. What are the key differences in all four 

approaches? Attempt to obtain the same result 

with DR and PS. Under what conditions is this 

possible? Calculate the resulting force densities and 

use these in FDM. How could one have obtained 

these force densities beforehand? Instead apply 

TNA to create a new design, and materialize the 

result by finding the stiffnesses and initial lengths. 

Use these in DR or PS. How could one have 

obtained these material properties beforehand?

Compare solutions obtained from FDM with 

prescribed force density q = 1 to those of DR 

with zero-length springs with prescribed spring 

constants  k 
s
  = 1, for the same boundary conditions 

and topology. Discuss the potential benefit of using 

zero-length springs.

Recall from Chapter 3 the constant stress arch. 

Given that the stress = F/A and the force density 

q = F/L, how should the shape-dependent load in 

equation (10.20) be changed to obtain such an 

arch? Implement this and compare the shape to 

that of the parabola and the catenary.
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The concept of steering of form is to be understood 

as an extension of form finding, which in turn is an 

extension of purely analytical approaches to structural 

design. Simple structural analysis is the least design 

related as it relies on a given design and it offers 

little in terms of feedback to the initial design other 

than identifying problem areas. Form finding directly 

links the form configuration with the forces in a 

closed loop. This approach is useful for initial form 

explorations and to get an interactive response to 

changes in settings, in both geometry and structural 

parameters, making it ideal for early design. This 

differs from traditional computational approaches in 

structural analysis, where the design is a given, or 

the result of a single set of given parameters. It is 

also distinct from structural optimization, where the 

result is a single solution based on a single set of given 

constraints. But in a more constrained design context 

or where factors other than structural performance 

such as constructability or architectural factors come 

into play, it is crucial to extend the notion of form 

finding towards one of steering of form towards 

desired design outcomes that take into account the 

combination of the different design goals without 

compromising the integrity of the result. Hierarchical 

design systems such as current parametric design 

models alone are not adequate to achieve this and 

neither are closed optimization systems that do not 

CHAPTER ELEVEN

Steering of form

allow for the integration of other possibly non-struc-

tural constraints.

Instead, we require an alternative platform for the 

integration of different design factors through the 

shared language of form and forces. This is achieved 

by extending form-finding methods to steering of 

form and by developing additional algorithms to allow 

continuous manipulation of the various parameters, in 

order to achieve additional goals besides some struc-

tural optimum.

The examples here are using particle-spring systems, 

a method explained in Chapter 9, but extends beyond 

this particular form-finding method, and can apply 

to other well-known methods discussed in this book, 

such as the force density method (Chapter 6), thrust 

network analysis (Chapter 7) and dynamic relaxation 

(Chapter 8). In any case, steering of form offers the 

chance for design discoveries that would neither be 

apparent in the optimized solution nor in the original 

design intent.

11.1 Form finding

The purpose of form finding is to find force equilibrium 

structures. In their simplest set-up, form finding 

methods, both physical and digital ones, generate 

catenary curves, or simple hanging forms (Fig. 11.1). 

Physical methods have generated structures such as 
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the Colònia Güell by Antoni Gaudí (see page 130). 

While producing structurally pure forms, the catenary 

form vocabulary has severe limitations in its general 

application to design.

In discrete systems, like a particle-spring network, 

form finding requires the definition of properties such 

as a mesh topology, spring stiffnesses and geometric 

lengths. Changing the parameters of the system influ-

ences the geometric shape outcome as well as the 

force distribution. All systems (with at least one fixed 

point) should eventually come to rest and provide 

an equilibrium solution for that specific configu-

ration, but will respond to additional changes to the 

parameters. This allows the definition of form-finding 

problems – for example, for shell structures – to 

be set up for the exploration of different results. In 

particular, a non-hierarchical system of associations 

allows for edits at all levels of the definition of the 

design, the approach referred to here as steering of 

form. The term ‘steering’ emphasizes a more active 

role of the designer in the form-finding process by 

allowing varying degrees of ‘sub-optimal’ solutions. 

But, without any compromise, most design problems 

could not be addressed using form-finding techniques. 

Ideally, the designer is made aware of any departure 

from the structurally most efficient solution, but is 

allowed to deviate if desired for design reasons.

Figure 11.1b illustrates such exploration by 

different variations of simple particle-spring chains 

with equal weight distribution. Possible variations 

can be the number of springs, the length of springs 

and the mass of the individual particle nodes. Higher 

Figure 11.1 (a) A basic particle-spring chain settling into catenary form, starting from rest lengths longer that the initial 
straight-line state, and (b) additional point loads and attached chains

(a)

(b)
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point loads are introduced and additional chains are 

attached. The resultant equilibrium forms expand the 

single catenary curve form and offer more possibilities 

to steer the design.

The advantage of such systems is the iterative nature 

of the exploration, where form is always a response to 

an equilibrium state of forces in the system, and every 

change potentially affects the entire system, hence the 

form will continuously adapt to unbalanced loads.

Form-finding approaches such as particle-spring 

systems can deal equally well with determinate and 

indeterminate structural systems, even if an analytical 

solution does not exist. This makes them particularly 

interesting for shell structures as all shell structures 

are indeterminate structures and, therefore, only one 

of many possible force distributions can be calculated 

at one time.

11.2 Steering principles

Of course, any good form-finding method will always 

steer the form towards a desired outcome. But, with 

many computational implementations, the complex 

inner workings of force equilibrium structures are 

obscured. Designers should have more possibilities of 

influencing and iteratively adjusting emergent forms. 

There are several ‘steering’ principles introduced here 

specifically for particle-spring systems, but they are 

valid for, or analogous to, those that govern other 

form-finding methods. These principles are variations 

in parameters such as:

the support conditions;

the loads on, or masses of the nodes;

the length and strength of the springs;

the topology of the network and the related discre-

tization of load.

Steering here can be literally controlling form 

through these parametric settings, but it can be more 

indirect, through additional algorithms that adjust 

the available settings to accomplish a particular goal. 

For instance, one may devise a geometric form as 

a target and use iterative adjustments to steer the 

geometry towards a shape target, something that 

may be very time-consuming and manually almost 

impossible, but feasible computationally. In future 

developments, hybrid form-finding systems may 

allow for the combination of compression-only and 

moment-resistant loads such as shown in Figure 11.2 

where the coloured sections are increasingly stiffened 

to depart from the pure catenary.

11.2.1 Support conditions

There are a number of possible support conditions 

in structures, which can be helpful in arriving at 

better mesh results. As the initial mesh geometry 

and topology is often generated flat for ease of 

programming and due to the unknown final shape, 

the geometric deformations in the form-finding 

process can be large. As a consequence, an initial 

support configuration may not be aligned with the 

emergent geometric equilibrium shape. In such a 

case, the supports should be adjusted accordingly, but 

within limits as the supports still need to resist the 

forces coming from the shell. Two simple solutions are 

fixed and partially fixed supports that allow for sliding 

in one axis or in one plane.

The simplest constraint is a pinned support which 

fixes some particle to an (x,y,z) position in space. 

Any forces trying to displace such a particle are 

ignored. In a system with gravity, at least one fixed 

support is needed for the system to come to rest in an 

equilibrium state.

Figure 11.2 Experiment with partially moment-resistant structures in the same form-finding solver for hybrid structures
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In the case of sliding supports, constrained only to 

the horizontal xy-plane, supports might simply slide 

together. In order to provide some resistance, tie-back 

springs to a specific location (such as the starting 

point) could be used. These may also be updated 

according to a specified force threshold; if the force 

is exceeded, their rest length may be increased. This 

offers more freedom for the shape to settle into 

equilibrium, especially if the spring mesh rest lengths 

are not updated, but of course at the cost of control.

Figure 11.3 shows a regularly spaced quad mesh 

which is attached to the support plane at random 

points using the described method. As the mesh is 

loaded, the supports adjust their position in the x- and 

y-directions according to the incoming forces and the 

resulting domes are more evenly stressed as a result.

The position of the supports may follow a higher 

logic. In Figure 11.4 a sine curve defines the roof 

support. When the sine curve is flattened, the 

curvature in the roof canopy is reduced as well. In 

this example, the spring lengths of the mesh are also 

adjusted in combination with the amplitude of the 

undulating support edge. The longer the springs, the 

less pronounced are the valleys and peaks.

Changing the constraints of the supports is another 

effective way of influencing the shell geometry. In 

Figure 11.5, supports are constrained in the z-direction 

and can move freely on the horizontal plane. However, 

once inside a given geometric boundary the particle is 

freed and becomes part of the shell mesh.

Figure 11.3 Gentle valleys and peaks of the resultant mesh, where supports were restricted to the xy-plane, restrained by 
tie-back springs

Figure 11.4 Undulating support edge of the mesh

Figure 11.5 Mesh with a geometric perimeter defining 
when particles are either free to move or constrained to the 
xy-plane

11.2.2 Loads

The default reading of a particle-spring mesh in its 

simplest form is most likely that of self-weight with 

each particle representing the point of mass at the 

centre of mass of the surrounding region of material. 

Variations in mass between particles, unequal spacing 

of particles or the attachment of additional particles 

can be used to integrate external loads or uneven load 

distributions in the load-bearing structure itself.

Varying masses is one measure that can be used 
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to steer the form of the structure away from singular 

catenary curves (Fig. 11.1a) towards more expressive 

vocabulary as seen in Gothic cathedrals and Gaudí’s 

work alike. For example, a single point load breaks 

the catenary curve into two separate catenary curves, 

and additional point loads create further catenary 

segments (Fig. 11.1b).

11.2.3 Spring properties and geometric targets

In particle-spring systems, the force in each spring is 

governed by its spring stiffness and length. Through 

the manipulation these parameters it is possible to 

direct the overall form within the limits of a given 

topology. One can monitor and (iteratively) adjust 

both quantities; for example, to get the spring to stay 

within a small deviation of its original starting length.

Steering of form can also be achieved by estab-

lishing fixed geometric targets in space. The mesh 

is adjusted by measuring the distance of the closest 

particles to those targets, and subsequently extending 

or shrinking the adjoining springs proportionally to 

that distance. Once the shell intersects with the 

geometric target the deformation is stopped.

11.2.4 Topology

The starting topology and geometry is the main 

interface for specifying the final form.

In the example of the simple chain, connecting 

additional chains mid-length of an arc will introduce 

additional forces and break up the singular catenary 

into multiple catenary curves (Fig. 11.1). This 

can be used to vary the formal appearance of the 

structure while still working with a compression-only 

equilibrium structure.

When using simple scripted topologies for surface 

structures, regular grids are often a starting point. 

Similarly straightforward are randomized triangulated 

meshes when using standard meshing approaches 

such as Delaunay triangulation.

Arguably, the most common default meshes are 

quad grids due to their simple repetitive geometry and 

constant node valence. But, they are not particularly 

well suited for form finding. Take, for instance, the 

case of an equally spaced rectangular grid, fixed at its 

four corner points, with an equal load distribution 

assumed using particles of equal mass. The mesh 

distorts extremely as it moves towards an equilibrium 

state with quad cells close to the supports in the 

corners collapsing completely into rhombic shapes. 

The result may seem similar to what happens when 

hanging a cloth in physical space, but in detail the 

load distribution and load density from self-weight 

has changed, due to overlaps and self-intersections of 

the mesh.

Without further force-dependent adjustments, the 

subsequent solutions can therefore produce unrealistic 

results. The force distribution could be improved if 

spring rest lengths or stiffnesses are adjusted itera-

tively to reduce excessive stretching of the springs. 

However, geometric distortions and self-intersection 

can remain a problem, and increasing spring stiffness 

can only be done up to a point before the solver 

becomes unstable.

Another improvement is a re-meshing, or updating 

of the masses, based on the surface area of the resultant 

equilibrium mesh; for example, if a shell of equal load 

distribution and thickness would be the goal.

Alternatively, a regular triangulated grid also 

prevents excessive deformation of the quad mesh due 

to the stiffening diagonals. Keep in mind that self-

intersection can still occur. So, in any case, particular 

care should be taken with setting up and evaluating 

the results from particle-spring systems as the distor-

tions could be overlooked.

A triangulated grid is also helpful if the mesh is 

supposed to visually approximate a material such 

as a fabric. This is because the added diagonals can 

mimic the shear capacity of a fabric – especially if 

two diagonals are added to each quad to form a cross 

– leading to wrinkling and folding behaviours. The 

diagonals also help to keep the particle distribution 

more even, and reduce distortion, since the cells are 

now less likely to collapse in the corner regions where 

there is a lot of shearing.

Different mesh topologies, iterative re-meshing 

strategies and also iterative parameter adjustments 

could account for the possible deformations of the 

geometric mesh during the form-finding process. This 

does require a more complex set-up. Alternatively 

one can set a topology and geometry close to the 

expected end result to reduce these deformations. Still, 

changing the mesh topology has a major impact on 
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the resultant form, and so steering the design through 

topological variations is arguably the most influential 

of all form-steering methods. It is therefore worth-

while varying the mesh topology and observing its 

influence on form. Figure 11.6 shows a repetitive 

topology to create a cathedral-like structure, where 

change leads to very different design expressions and 

a wider range of formal responses, yet the structure is 

still in equilibrium. Figure 11.7 shows how one may 

iteratively arrive at such responses.

11.3 Structural feedback

There exist many possible ways to provide both visual 

and numerical details about the (structural) state 

of the system, embedded in the three-dimensional 

context of the geometry. Such feedback can help the 

designer assess the state of the system as it evolves and 

offer qualitative clues to its structural behaviour. This 

can be valuable in the early stages of designing shells 

and is crucial for steering of form.

11.3.1 Visualization of forces

Of primary importance is visualizing the forces in the 

system. A very effective technique for monitoring the 

force flow is colouring and line weight (e.g. Fig. 11.3) 

in correspondence to the forces present in the spring 

members at any time. Furthermore it is possible to 

generate geometric envelopes that correspond to the 

forces present in a member for dimensioning and 

fabrication purposes (Fig. 11.8). Another interesting 

technique is to draw the history of positions of 

particles over time, which gives a visual trace of the 

relative stability of a node in space either during form 

finding or during subsequent loading tests (Fig. 11.9).

Figure 11.7 A topology created iteratively by manually adding more and more chain segments to an initial single arc

Figure 11.6 A repetitive topology to create a cathedral-like structure, where change leads to very different design 
expressions and a wider range of formal responses
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11.3.2 Structural response

The addition of ‘phantom forces’ make the crude 

simulation of additional load cases possible. For 

instance, a lateral wind load in the form of springs 

pulling in the wind direction on the mesh nodes 

attached to massless particles in mid-space that are 

offset at a fixed distance to their parent mesh node 

allow for the testing of the mesh response to such 

loads. This is not a proper wind simulation but it may 

give an idea of the effects that external loads would 

have on a particular mesh geometry, how its stiffness 

is distributed, how its equilibrium is affected and what 

kind of displacements would occur, all within the 

same environment.

Figure 11.8 Geometric envelope based on forces present in the structure

Figure 11.9 Tracing history of particles for two different load cases

Figure 11.10 Force fluctuations triggered by shifting the fixed support positions, similar to an earthquake event

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


138   AXEL KILIAN

A similar, very schematic test could be done by 

subjecting the support particles to abrupt lateral 

and vertical displacements simulating movements of 

the ground during an earthquake and observing the 

resulting forces and displacements in particles and 

springs over time (Fig. 11.10). Such displacement 

history may be helpful in evaluating initial dimen-

sioning of geometric material envelopes for the 

structures and help to get a sense of necessary redun-

dancy in different areas of the shell.

11.3.3 Flow of forces

Using a dense, random-point cloud within the surface 

boundaries as a starting point results in a statisti-

cally uniform distribution of masses. Then one can 

use Delaunay triangulation to determine the mesh 

topology. When releasing the mesh to gravity, the 

loading of the springs reveals the emerging force paths 

through the shell as it comes to rest in equilibrium. 

Due to the random nature of the topology, these paths 

are more independent from the starting topology than 

the regular quad meshes and help to understand the 

flow of forces (Fig. 11.11).

More generative approaches may work with the 

metaphor of flow of forces, with forces originating 

from the distributed mass of the shell and ‘flowing’ 

towards the support points of the shell. A literal inter-

pretation of this is rainflow analysis. Its hypothesis is 

that ‘like a rainflow, loads will flow along curves with 

the steepest ascent on the shell surface to its supports’ 

(Borgart, 2005). Section 7.5.1 compares the force flow 

derived from geometry (rainflow analysis) and from 

internal force distribution in a discrete network.

Topology studies may be a way to steer the design 

towards desired results with topologies reflecting the 

expected flow of forces more closely. Note that the 

topology itself in turns impacts the resulting geometry 

(Fig. 11.12).

11.4 Conclusion

For the design of form-passive structures such as 

shells, it is necessary to appropriate computational 

methods traditionally used for engineering-dominated 

approaches to design. This can be achieved by replacing 

the absolute goals of optimization with interactive, 

iterative approaches that make use of the same under-

lying algorithms. Such approaches should allow the 

designer to selectively deviate from optimal solutions 

and explore design variants, with multiple possible 

conflicting goals, found through discovery rather 

than precise analysis. Analytical methods would be 

computationally time intensive and, more impor-

tantly, may not have helped in discovering such a 

design configuration. The ultimate goal is to use the 

power of computational methods to achieve more 

integrative design solutions, and to extend the canon 

of forms established through conventional analytical 

techniques. This offers the chance for design discov-

eries that would neither be apparent in the optimized 

solution nor in the original design intention.

Fig 11.11 A randomized triangle mesh revealing the development of load paths towards the final equilibrium state
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(a)

(b)

(c)

Figure 11.12 Result from particle-spring form finding for different topologies for the same plan, based on (a) conventional 
meshes, (b) expected flow of forces and (c) branching strategies
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Klaus Linkwitz and Diederik Veenendaal

LEARNING OBJECTIVES

Describe least-squares problems (in the 
context of structural form finding), and the 
corresponding normal equations to solve 
them.
Apply additional constraints to the force 
density method.
Demonstrate how to incorporate material and/
or fabrication constraints in the force density 
method.
Find the form of a gridshell subjected to 
constraints, using the nonlinear force density 
method.

PREREQUISITES

Chapter 6 on the force density method.

CHAPTER TWELVE

Nonlinear force density method
Constraints of force and geometry

Force densities, in their purest form, result in systems 

of linear equations. This is just the first step when 

designing a real structure. For instance, it is unlikely 

that our first linear form-finding result satisfies all 

physical and geometrical constraints. To overcome 

any tedious trial-and-error strategies in our selection 

of force densities, we require an alternative approach 

Figure 12.1 The Multihalle in Mannheim, 1976, an 
application of nonlinear FDM

to effectively and systematically manipulate our design, 

while simultaneously creating new solutions in static 

equilibrium. We take advantage of the method of 

least squares, and present a nonlinear approach to 

the Force Density Method (FDM), which allows the 

introduction of secondary constraints.

The first author of this chapter was responsible for 

developing nonlinear FDM for the Munich Olympic 

Roofs. This very first application of the method, deter-

mining the cutting patterns of the project’s cable-net 

roofs, showed its potential. Then, as head of Büro 

Linkwitz und Preuß, he adapted the method together 

with his team, Lothar Gründig and others, and applied 
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it to two timber shells, which we use to demonstrate 

this approach: the Solemar Therme timber shell roof 

in Bad Dürrheim (see page 142 and Fig. 12.4); and the 

Multihalle timber gridshells in Mannheim (Fig. 12.1).

We apply constraints, similar to those of the 

featured projects, to our design brief, continuing the 

example of Chapter 6.

The brief

To expand its sports offerings, the municipality of 

Stuttgart is developing a new sports complex, which 

includes a swimming pool and an ice rink. A prelim-

inary design has been made for two roof structures 

(Chapter 6), but several changes are necessary. First, 

along the central corridor between both roofs, a 

direct connection is made. There is an angle between 

both roofs at this point and the design team wants 

to have a smooth transition of the roof curvatures 

(Fig. 12.2). Second, the roof over the ice rink will 

be made from an initially flat grid. Therefore, the 

segments in the interior of this roof need to be 

equidistant (Fig. 12.2).

12.1.1 Normal equations

Although the contemporary presentation of a least-

squares problem is in an unconstrained form (see 

Section 12.1.2), typically nonlinear FDM has been 

presented in the form of problems, as simple equality-

constrained quadratic programs. Here we show the 

equivalence, while deriving the solution, starting from 

the minimization problem as it appears historically in 

FDM literature:

 min.  x T x (12.1)

subject to Ax = b,

where b is often referred to as the observations in least 

squares, and in our case generally is a vector of residual 

forces. Applying the method of Lagrange multipliers, 

we introduce the Lagrangian,

 Λ(x,l) =  x T x − 2 l T (Ax − b) (12.2)

which we solve by finding the minimum of Λ, that 

is,  Λ(x,l) = 0. We take the partial derivatives, or 

optimality conditions,

   ∂Λ ___ 
∂x

   = 2 x T  − 2 l T A = 0, (12.3)

   ∂Λ ___ 
∂l

= − 2(Ax − b) = 0, (12.4)

or in block matrix form,

 

⎡ I − AT ⎤
⎣ − A 0 ⎦  

⎡ x ⎤
⎣ l ⎦ = 

⎡ 0 ⎤
⎣ − b ⎦ . (12.5)

From the first condition, we obtain

 x =  A T l, (12.6)

which, substituted in the second condition, gives

 l=   ( A A T  )  −1 b, (12.7)

and back into the first condition results in,

 x =  A T   ( A A T  )  −1 b =   (  A T A )  −1  A T b, (12.8)

Figure 12.2 (a) Connection between both roofs and (b) the 
interior segments of the ice rink roof

12.1 Method of least squares

The basis of nonlinear FDM lies in the method of 

(nonlinear) least squares. This section introduces the 

basics of this method. The method of least squares finds 

the approximate solution of under- or over determined 

systems (number of equations <, respectively > number 

of unknowns). In other words, it applies to systems 

A x *  = b, where the left-hand side matrix A is no longer 

square, which means there is either no or no unique 

solution  x * .

(a)

(b)
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which is the solution to the so-called normal equations,

 ( A T A)x =  A T b. (12.9)

12.1.2 Contemporary least squares

The method of least squares is usually explained by 

the following premise: instead of finding the solution  

x *  (which is not unique, or does not exist), we wish to 

find an approximate value x such that Ax is the best 

approximation of b. The errors  e *  of our approxima-

tions are not known, since we do not know  x * , but can 

be related to the residuals r, which we can compute,

  e *  =  x *  − x, (12.10)

Ae = A x *  − Ax

 = b − Ax = r. (12.11)

The smaller the distances ∥b − Ax ∥ 2 , the better the 

approximation. Finding x in this context is the 

least-squares problem, where ‘least squares’ refers 

to the fact that the overall solution minimizes the 

sum of the squares of the errors (or residuals) made 

in the results of every single equation. A least-

squares problem is an optimization problem with 

no constraints and has an objective which is a sum 

of squares,

 min.   ( b − Ax )  T  ( b − Ax ) . (12.12)

The solution of a least-squares problem can be 

reduced to solving a set of linear equations, the 

normal equations, by multiplying both sides of the 

linear system Ax = b with  A T ,thus obtaining a square 

left-hand side normal matrix  A T A, and the system

 ( A T A)x =  A T b, (12.13)

which has the analytical solution x = ( A T A ) −1  A T b, 

which we also derived in equation (12.8). The matrix 

( A T A ) −1  A T  is also known as the Moore–Penrose 

pseudoinverse  A + .

12.1.3 Weighting factors

The solution can be influenced by introducing 

weightings w, thus assigning relative importance 

to our observations b. The normal equations for a 

weighted least-squares problem are

 ( A T  W −1 A)x =  A T  W −1 b. (12.14)

where W, assuming the observations are independent, 

is a diagonal matrix of the vector of weighting 

factors w.

12.1.4 Nonlinear least squares

Another complication is that, in this chapter, A is a 

function of x, and needs to be recalculated. In other 

words, the problem is now a nonlinear least-squares 

problem. The first step is to linearize the problem 

according to Newton–Raphson’s method, and by 

introducing the first derivative J, write

Ax = b,

 A x 
0
  +   ∂Ax

 ____ 
∂x

   Δx = b

 JΔx = b − A x 
0
  =  r 

0
 . (12.15)

We are still solving a linear system JΔx =  r 
0
  of the form 

Ax = b to which we can apply normal equations, but 

instead of finding x directly, we now have iterations, in 

which x is updated using Δx,

Δx =   (  J T J )  −1  J T  r 
0
 

 x =  x 
0
  +   (  J T J )  −1  J T  r 

0
 . (12.16)

This iterative procedure is commonly known as Gauss–

Newton’s method.

12.1.5 Iterative solving

Although normal equations are correct and exact, the 

normal matrix  A T A requires a matrix–matrix product, 

and has to be inverted, making them computationally 

inefficient and demanding. They are unsuitable for 
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flexible implementations and large-scale problems 

(even more so in the force density formulation 

by Schek (1974), in which the constraints are all 

rewritten as a function of the force densities, leading 

to additional inverted matrix–matrix products). One 

solving approach, adopted for the Multihalle (Gründig 

and Schek, 1974), was the application of the conjugate 

gradient (CG) method to the normal equations. In 

this iterative method, it is not necessary to form the 

normal matrix  A T A explicitly in memory, but only 

to perform (transpose) matrix–vector multiplications. 

Nowadays, we know this approach, for application to 

underdetermined systems, as applying the CG method 

on the Normal Equations (CGNE) (Saad, 2003). In 

such an approach, we first solve ( A T A)y = b, for y, in 

such a way that  A T A is not explicitly formed, to then 

compute the solution, x =  A T y. In the remainder of 

this chapter, we combine the method of least squares 

with FDM to deal with additional constraints; this 

is nonlinear FDM as it was applied to the Solemar 

Therme and Multihalle shell structures. Figure 12.3 

shows the process of nonlinear FDM.

12.2 Notation

To present our formulations in this chapter in three 

dimensions, we redefine some of the matrices from 

Chapter 6 to include the y- and z-directions. Note 

that this is convenient in terms of notation, but means 

that the matrices become more sparse (they contain 

relatively more zeroes).

The branch-node matrices

C: = 
⎡ C   ⎤
⎢  C  ⎥
⎣   C ⎦

 C 
N
 : = 

⎡  C 
N
    ⎤

⎢   C 
N
   ⎥

⎣    C 
N
  ⎦

,   C 
F
 : = 

⎡  C 
F
    ⎤

⎢   C 
F
   ⎥

⎣    C 
F
  ⎦

are 3m × 3 n 
N
  and 3m × 3n block-diagonal matrices. 

The matrix of force densities

Q: = 
⎡ Q   ⎤
⎢  Q  ⎥
⎣   Q ⎦

is 3m × 3m, with the vector q still of size m. The 

coordinate difference matrices are stacked vertically, 

so

  ̄  U  =   [ U V W ]  T ,

No

 

START

END

Initial geometry in equilibrium
C, x

0
, q

0

Express new constraints
as a function of x

N
 and/or q.

Linearization: take first derivatives
of constraints w.r.t. x

N
 and/or q.

Assemble system of linear equations
of the form A[Δx

N
 Δq]T = b.

Rewrite to normal equations
of the form (ATA)[Δx

N
 Δq]T = ATb.

Impose soft constraints x
N,0

, q
0
,

and/or hard constraints Δx
N
, Δq.

Solve system for remaining,
unconstrained Δx

N
 and/or Δq.

(e.g, CGNE)

Update initial values x
0
 and q

0

||r|| < threshold ?

Gauss–Newton’s method

Yes

Figure 12.3 Flowchart of nonlinear FDM
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of size 3m × m. The 3 n 
N
 -vectors of coordinates 

and loads are also stacked: x: =   [ x y z ]  T  and 

p: =   [  p 
x
   p 

y
   p 

z
  ]  T .

12.3 Solemar Therme

The timber shell of the Solemar Therme health spa 

in Bad Dürrheim, Germany (Fig. 12.4), consists of a 

skeleton of glued, laminated (glulam) timber beams, 

resting on five tree-like columns. The total surface 

area is 2,500m2. The tree-columns are between 9.1m 

and 11.5m high, roughly spaced 20m apart. A doubly 

curved surface covers the spa, suspended as if it were 

a tensioned membrane, using the tree-columns as 

high-points and parts of the edge beams as low-points. 

From the 6m or 8m circular opening at the top 

of each tree-column, 200mm × 205mm ‘meridian 

ribs’ connect the columns and the edge boundaries 

in a radial pattern. They intersect with horizontally 

positioned 80mm × 80mm or 120mm × 140mm 

‘annular ribs’, placed in a tangential pattern. Each rib is 

held together by finger jointing which can withstand 

both tension and compression forces.

The ideal shape of the grid-like structure would 

be characterized by the fact that, under self-weight, 

both meridian and annular ribs are subjected to axial 

forces, and that any bending is as small as possible. 

In addition, with respect to an economical prefabri-

cation, certain symmetries in the form allow reuse of 

prefabrication tools and set-ups. Other constraints 

relate to the necessity to have uniform angles of the 

meridians in their connection with the top-ring of the 

tree-columns.

To take all these requirements into account, a 

strategy of form-finding, nonlinear FDM was 

employed which had been found to be very successful 

with the design of cable-net and membrane struc-

tures, such as the Munich Olympic Roofs. In a 

preliminary design stage, model and computer studies 

were executed based on prestressed equilibrium shapes, 

generated with FDM (in further studies the feasibility 

of the design was investigated).

12.3.1 Linear form finding

The process set out with a topological description, 

using the branch-node matrix C, of the skeleton-like 

structure. Although the roof would eventually be 

built as a rigid structure, it was, at this stage, discre-

tized and modelled as a network of bar elements. 

The resulting net was hung between the high tree-

columns and bottom edge beams. The high points 

were fixed in the x-, y- and z-direction. The low points 

of the edge beams had one degree of freedom, the 

z-direction, with their x- and y-coordinates placed 

along horizontal circles (so boundaries, circular in 

plan). Given certain prescribed force densities q and 

external loads p, linear FDM was carried out. Figure 

12.5 shows results from linear form finding.

Figure 12.4 Solemar Therme in Bad Dürrheim, Germany
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12.3.2 Nonlinear form finding

The results of the first phase of form finding were then 

modified to accommodate additional constraints. The 

definition and application of these constraints was a 

trial-and-error procedure, with architect and engineer 

closely collaborating. The constraints, or rather design 

improvements, were necessary to reduce unnecessary 

torsion in the meridian ribs, influence the curvature 

of the ring ribs, observe certain heights due to spatial 

requirements of the spa underneath, improve the 

aesthetics of the connection between the ribs and 

tree-columns and so on. To enforce these constraints, 

an optimization problem was formulated as follows. 

Depending on the different sets of constraints imposed, 

target values for certain node positions or force densities 

were set, while the coordinates of all other points and 

the remaining force densities were free to change. This 

process rendered a number of viable designs.

The main condition in this optimization problem 

is static equilibrium in equation (6.28), where we 

introduce a function g with respect to  x 
N
  and q,

g( x 
N
 ,q) − p =  C  

N
  T
    ̄  U q − p

 =  C  
N
  T
  QCx − p

 =  D 
N
  x 

N
  +  D 

F
  x 

F
  − p = 0, (12.17)

where, to simplify notation,  D 
N
  =  C  

N
  T
  Q C 

N
  and  

D 
F
 = C  

N
  T
  Q C 

F
 .

Suppose that we have additional equality constraints, 

such as those mentioned earlier, which we are able to 

express as a function of the force densities and nodal 

coordinates. The challenge now is to prescribe  x 
N
  and 

q such that these constraints are satisfied (as much as 

possible), while maintaining static equilibrium. These 

additional equations are generally nonlinear and are 

not fulfilled at the initial values  x 
N,0

  and  q 
0
 , found 

during the initial, linear form finding. Because of the 

nonlinearity, we construct an iterative method, where 

we ask for changes Δ x 
N
  and Δq, starting with  x 

N,0
  and  

q 
0
 , to satisfy linearized conditions instead. We linearize 

equation (12.17) according to Newton–Raphson’s 

method (so applying a Taylor series expansion to g, 

using the first-order approximation) with g( x 
N,0

 , q 
0
 ) 

written as  g 
0
 ,

g( x 
N
 ,q) − p = g (  x 

N,0
  + Δx, q 

0
  + Δq )  − p

 =  g 
0
  +   

∂g( x 
N
 ,q)
 ______ 

∂ x 
N
 
  Δx +   

∂g( x 
N
 ,q)
 ______ 

∂q
  Δq = 0 (12.18)

and, using  C  
N
  T
    ̄  U q =  D 

N
  x 

N
  +  D 

F
  x 

F
 , and calling the right-

hand side vector of residual forces, the residuals r,

Figure 12.5 One of the first and a final computer model from the original linear form finding (Gründig, Linkwitz, Bahndorf & 
Ströbel, 1988)
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∂g( x 

N
 , q)
 ______ 

∂ x 
N
 
  Δ x 

N
  +   

∂g( x 
N
 , q)
 ______ 

∂q
  Δq = p −  g 

0
 

  
∂( D 

N
  x 

N
  +  D 

F
  x 

F
 )
  ___________ 

∂ x 
N
 
  Δ x 

N
  +   

∂( C  
N
  T
    ̄  U q)
 _______ 

∂q
  Δq = p −  C  

N
  T
     ̄  U  

0
  q 

0
 

  D 
N
 Δ x 

N
  +  C  

N
  T
    ̄  U Δq = r, (12.19)

or in block matrix form, the condition equation is,

  [  D 
N
   C  

N
  T
    ̄  U   ]  [   Δ x 

N
 
        

Δq
   ]  = r (12.20)

which is an underdetermined system of equations, 

since the left-hand side matrix is 3 n 
N
  × (3 n 

N
  + m). In 

equation (12.20) the mutual interaction of form and 

forces becomes apparent. Despite introducing certain 

coordinates  x 
N,0

  and enforcing movements in Δx to 

be zero, we find a solution in a state of equilibrium. 

Similarly, by enforcing certain fixed force densities 

in  q 
0
  with corresponding changes in Δq set to zero, 

we are able, for whatever reason, to impose specific 

forces on the structure. For the Solemar Therme 

shell roof, for instance, the shape of the ribs was 

optimized at certain nodes, by moving them to the 

correct position and allowing for changes in the force 

densities, and all the other coordinates, in order to 

find a new geometry. Convergence will be faster if 

the changes are not set to zero, and the coordinates  

x 
N,0

  and force densities  q 
0
  are considered as prefer-

ences, as soft constraints, with static equilibrium as a 

hard constraint. Then, the geometry is a compromise 

between any initial values  x 
N,0

  and  q 
0
 , depending on 

the weightings.

Thus, we seek changes Δ x 
N
  and Δq such that 

the coordinates  x 
N
  =  x 

N,0
  + Δx and force densities q =  

q 
0
  + Δq satisfy the constraints. The optimization 

problem, subject to an equality constraint, is

 min. Δ x  
N
  T
  Δ x 

N
  + wΔ q T Δq (12.21)

subject to (12.19),

where w>0 is a single weighting factor. By changing 

the weighting factor, one can reach either better 

reference to a prescribed, initial shape  x 
N,0

  (w is small) 

or greater consideration of the desired force distri-

bution defined by  q 
0
  (w is large). In the case of more 

detailed control of the constraints, the optimization 

problem is

 min. Δ x  
N
  T
   W 

x
 Δ x 

N
  + Δ q T  W 

q
 Δq (12.22)

subject to (1.19)

with 3 n 
N
  + m individual weighting factors, in the 

form of the diagonal (which assumes the factors are 

independent) weighting matrices  W 
x
  and  W 

q
 .

The solution of the resulting normal equations, in 

the form of equation (12.8), is then

 [   Δ x 
N
 
        

Δq
   ]  =  [    D 

N
 
          

  1 _ w    ̄  U  C 
N
 
   ]   (  [  D 

N
   C  

N
  T
    ̄  U  ]  [    D 

N
 
          

  1 _ w    ̄  U  C 
N
 
   ]  )  

−1

  [ r ] 

 =  [   
 D 

N
 
           

  1 __ w    ̄  U  C 
N
 
   ]   [  D 

N
  D  

N
  T
     1 _ w   C  

N
  T
     ̄  U  2  C 

N
  ]  −1

  [ r ]  (12.23)

For the next iteration one sets  x 
N,0

 : =  x 
N,0

  + Δ x 
N
  and  

q 
0
 : =  q 

0
  + Δq, then updates the matrices as well as the 

residuals and repeats the iteration until the residuals 

are considered small enough.

Figure 12.6 shows the final result from nonlinear 

FDM satisfying various constraints. The load-

deflection behaviour, for typical load cases, was then 

checked with FE analysis.

Figure 12.6 The final equilibrium shape (Gründig, Linkwitz, Bahndorf & Ströbel, 1988)

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


150   KLAUS LINKWITZ AND DIEDERIK VEENENDAAL

12.3.3 Prefabrication an intermediate step. Together with the dimensions 

of the ribs’ cross section, the edge points of the ribs 

were calculated. These were defined in the global 

coordinate system of the entire model, which was also 

useful for construction on site. In order to calculate 

the patterns of the ribs for fabrication, the coordi-

nates were transformed to a local coordinate system 

for each rib. The first axis was defined by the two end 

points of the rib segment. The other two orthogonal 

axes were then defined by a best-fitting plane of the 

three-dimensionally curved rib. This local coordinate 

system allowed a convenient set-up of the manufac-

turing tools, minimizing the required heights above 

the manufacturing floor. The manufacturer was able 

to set up the tool paths and monitor the fabrication 

of around 400 individual elements of glulam timber, 

without any error or redundant manufacturing.

12.3.4 Connections

For the connections of the glulam ribs with cross lap 

joints, it is important that all their contact surfaces 

Figure 12.7 Construction site with all ribs assembled and 
placement of covering boards and sheeting

Due to the discretization of the shell’s surface as a 

spatial net, the result of the form-finding process is 

a network of straight centre lines, a wireframe, that 

idealize the actual meridian and annular ribs. This 

wireframe does not yet allow a unique definition of 

the three-dimensionally curved glulam ribs. However, 

their precise geometrical definition was a prerequisite 

for prefabrication. In addition, any torsion in the ribs 

had to be accounted for in their manufacture.

Figure 12.8 Prefabricated, strongly doubly curved glulam 
beams ready for transport to site

To define their shape, normal and tangent vectors 

along the ribs were derived from consecutive sets 

of discrete points along their paths. These vectors 

were determined by using neighbouring points and 

calculating their tangent plane. Alternatively, this 

information can be calculated by first tracing splines 

along the points of each discretely represented rib as 
Figure 12.9 (top) Meridian ribs with cross lap joints, attached 
to the edge beam, and (bottom) overlaid with the annular ribs
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are planar, such that an adequate fit is achieved in 

assembly. The assembly on the construction site will 

be more economical if all joints are also prefabricated, 

avoiding any additional labour on site. The CAD 

modelling of the cross lap joints and the monitoring 

of their prefabrication were therefore of the utmost 

importance. The design and the realization of the 

joints was possible due to the close cooperation with 

the master carpenter and based on knowledge of 

the production methods available in the factory. The 

beams and their assembly on site are shown in Figures 

12.7–12.9.

12.3.5 Application to brief

Similar to the Solemar Therme, we apply nonlinear 

FDM to our brief. As indicated in Figure 12.10, the 

roof of the swimming pool, where it connects to the 

adjacent ice rink, needs to follow a different curve. To 

this end a target surface is drawn in this area and for 

a part of the network, target nodes are projected. The 

corresponding target coordinates are given as input: 

the initial coordinates  x 
N,0

  are changed (blue nodes, 

Fig. 12.11). In addition, some changes to the topology 

are made and the fixed boundary nodes with coordi-

nates  x 
F
  are moved to the target surface.

The subsequent nonlinear FDM then seeks to find 

a compromise between the (partially altered) initial 

coordinates  x 
N,0

  and the original force densities  q 
0
 . For 

a weighting factor of w = 10 (so relatively favouring 

the forces), a compromise is found after seven itera-

tions, which is in static equilibrium within a given 

tolerance. Figure 12.11 shows the new network is 

closer to the target surface.

12.4 Multihalle, Mannheim

The previous glulam timber shell approaches a funicular 

shape only partially, due to a number of additional 

constraints imposed, and its design as an anticlastic 

surface. A funicular shape for a gridshell is more easily 

obtained from a hanging model. Here, pioneering 

work was achieved by Frei Otto, who, at the Institute 

of Lightweight Structures (IL) of the University of 

Stuttgart, investigated this type of shell. In 1974, he 

designed the Multihalle in Mannheim with a multi-

layered timber grid system resting on an edge beam 

at the perimeter the shell. The shell spans up to 80m. 

The shell comprises a layered grid (two layers in 

each direction) of long timber beams with very small 

cross sections (50mm × 50mm hemlock), forming a 

quadrangular mesh. At their intersections the beams 

are pin-jointed. This feature permits arbitrary changes 

in the angle. This is essential when the grid was lifted up, 

in sequences, from its initial flat position on the ground 

to its final spatial positions (see also Chapter 19).

Figure 12.10 Elevation of preliminary design, showing angle between the two roofs

Figure 12.11 Target surface with projected initial 
coordinates and resulting solution from nonlinear FDM
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As the point of departure, after a couple of feasibility 

studies, a very accurate, scaled hanging model was built 

(Figs. 4.13 and 4.14), with great accuracy. This model 

was then measured photogrammetrically, resulting 

in three-dimensional coordinates of all the nodes. 

These model-coordinates then served as approximate 

values for a robust nonlinear computer calculation to 

guarantee compression forces throughout as well as an 

equidistance mesh. This calculation was executed by 

Büro Linkwitz und Preuß, consulting engineers, and 

was the basis for mapping out the geometry on site 

as well as a subsequent FE analysis by Ove Arup & 

Partners. This analysis focused on the load deflection 

behaviour and buckling. Büro für Baukonstruktionen 

Wenzel-Frese-Pörtner-Haller were assigned as 

checking engineers.

12.4.1 Form-finding process

Based on the physical model, an initial coarse mesh 

with three-dimensional coordinates x was chosen as 

the basis for form finding. The points along the edge 

were modelled as fixed anchors points. A first linear 

form finding with constant force densities q and 

constant external loads p was carried out, resulting 

in a solution with unequal bar lengths throughout 

(Fig. 12.12).

The coordinates, obtained from the initial linear 

form finding, were then taken as initial coordinates  x 
N,0

  

for a constrained form finding; constrained such that 

the interior mesh would be equidistant. Subsequently, 

a more refined mesh was derived from photogram-

metric measurements of the physical model. Other 

additional constraints in the form finding included 

constant external forces, small deviations from the 

model measurements, as well as additional force 

conditions to avoid sudden changes in angles (caused 

by sudden changes of force). The result is shown in 

Figure 12.13.

The constraints mentioned can be expressed as 

conditions on the forces or force densities, or on the 

nodal coordinates. Compared to Section 12.3, an 

additional problem is the prescription of constant 

lengths in the inner part of network (all branches not 

connected to the boundaries). We wish to impose an 

additional equality constraint on  m 
I
  interior branch 

lengths  l 
I
 , such that they approach corresponding 

target lengths  l 
I,t

 , so the constraint is,

  l 
I
  =  l 

I,t
 . (12.24)

Linearizing the equation w.r.t. the unknowns, our 

additional condition equation becomes

   
∂( l 

I
  −  l 

I,t
 )
 ______ 

∂x
  Δx =  l 

I
  −  l 

I,t
 

  L  
I
  −1    ̄  U  

I
  C 

I
 Δx =  l 

I
  −  l 

I,t
 

    ̄  U  
I
  C 

I
 Δx =  L 

I
 ( l 

I
  −  l 

I,t
 ) = s, (12.25)

where subscript I indicates that it applies only to the 
Figure 12.12 Initial linear form-finding result from coarse 
mesh (Gründig and Schek, 1974)

Figure 12.13 Nonlinear form-finding result from fine mesh 
(Gründig, 1976)
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constrained branches, and the  m 
I
  residuals s contains 

measures of discrepancy between current and target 

lengths. For example, the branch-node matrix  C 
I
  is 

of size 3 m 
I
  × 3n. Then, the solution of the following 

optimization problem is sought,

 min. Δ x  
N
  T
  Δ x 

N
  + wΔ q T Δq

 subject to (12.19) and (12.25)

These equality conditions, rewritten as a single system 

of equations in block matrix form, are

 ⎡  D 
N
   C  

N
  T
    ̄  U  ⎤

⎣    ̄  U  
I
  C 

I
  0 ⎦  

⎡ Δ x 
N
  ⎤

⎣ Δq ⎦ 
=
 ⎡ r ⎤
⎣ s ⎦

 
(12.26)

where the left-hand side matrix is of size (3 n 
N
  +  m 

I
 ) ×  

(3 n 
N
  + m).

The solution of the normal equations is

⎡ Δ x 
N
  ⎤

⎣ Δq ⎦ 
=
 ⎡  D  

N
  T
    C  

I
  T    ̄  U  

I
  ⎤

⎣   1 _ w    ̄  U  C 
N
  0 ⎦

⎡  D 
N
  D  

N
  T
   +   1 _ w   C  

N
  T
     ̄  U  2  C 

N
   D 

N
  C  

I
  T    ̄  U  

I
  ⎤

⎣    ̄  U  
I
  C 

I
  D  

N
  T
      ̄  U  

I
  C 

I
  C  

I
  T    ̄  U  

I
  ⎦

−1

 

⎡ r ⎤
⎣ s ⎦ (12.27)

As before, after updating  x 
N,0

 : =  x 
N,0

  + Δ x 
N
  and  q 

0
 : =  

q 
0
  + Δq, the procedure iteratively searches until the 

residuals are below a certain chosen threshold.

12.4.2 Construction

The need for precise form-finding results that are in a 

state of equilibrium become clear when discussing the 

method of erection. When the grid for the Multihalle 

was finally assembled and still laying on the ground, 

all the angles at the nodes between the series of the 

timber ribs crossing each other were more or less 

equal to 90°. The different shapes of the shell during 

the different and final stages of erection were attained 

only by angle-changes at the nodes. Any change in 

the grid angles would immediately change the form 

of the shell. Any deviation from the equilibrium form 

would also induce additional (and unwanted) bending 

moments. To maintain the gridshell for an extended 

period of time, it is absolutely imperative to prevent 

the grid angles from changing. This was achieved by 

spanning diagonal ties, made from thin steel wires, 

between selected pin-joints in crucial areas of the shell. 

Moreover, the shell has to be inspected regularly to 

detect local movements in time. However, experience 

and long-time monitoring of gridshells have shown 

that, due to weathering and different loads, some 

of the fixing cables may become slack. This causes 

changes in the shape, which unless corrected, have 

the potential of leading to critical shape changes. 

Nevertheless, though the Multihalle was originally 

intended as a temporary building, built in 1976 for the 

West-German federal garden festival, it remains fully 

functional to this day. The resulting structure and its 

method of construction are discussed in further detail 

in Chapter 19.

12.4.3 Application to brief

We apply the same procedure to the ice rink roof 

structure as was used for the Multihalle. The 

objective is to find, within the interior of the network, 

equidistant segments. This is necessary to consider a 

method of erection similar to that of the Multihalle. 

The segments shown in bold in Figure 12.14 have a 

length difference of 0.2m. Because the topology we 

Figure 12.14 Preliminary design, interior network and 
topology changes and equidistant mesh from nonlinear FDM
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have chosen requires a rectangular (not a square) mesh 

to fit within the surface, we specify two target lengths: 

4.2m in one direction, 6.6m in the other. After our 

nonlinear form finding, we find an equidistant mesh 

with these two lengths. Both the residual forces r and 

the length differences s have dropped within given 

tolerances. The segments in bold now have a length 

difference of 0.0m to an accuracy of three decimal 

places. The resulting design for the entire sports 

complex is shown in Figure 12.15.

12.5 Conclusions

This chapter has presented a nonlinear, extended 

FDM, based on the least-squares method, as it was 

developed in the 1970s and later applied to the 

Multihalle timber gridshells and the Solemar Therme 

glulam shell roof.

Starting from a result from the standard FDM, one 

can add mechanical constraints as a function of the 

force densities q and/or geometrical constraints as a 

function of the nodal coordinates  x 
N
 . After linearizing 

the condition equations with respect to these variables, 

one obtains a system of equations. Based on chosen 

weighting factors w, an optimum is then found 

between the initial shape and the targets set by the 

designer, while guaranteeing static equilibrium. This 

approach avoids having to manually and iteratively 

change the force densities, such that the constraints 

are satisfied as much as possible.

The approach is flexible and was successfully applied 

to two timber shell structures, with very different 

constraints. To formulate appropriate constraints, an 

important aspect is the careful consideration of how 

the structure will be fabricated and constructed. It is 

also important to consider that the resulting discrete, 

wireframe model still needs to be dimensioned and 

materialized, checked using FE analysis (and model 

testing), and finally developed into sets of precise 

working drawings.

Key concepts and terms

The method of least squares is an approach that finds 

the approximate solution of under- or overdetermined 

systems, where there is no unique solution. Instead, we 

find the best approximation by minimizing the sum of 

the squares of the residuals.

Normal equations are equations that give the standard, 

exact solution to least-squares problems.

A quadratic program is a type of optimization 

problem subject to equality and inequality constraints, 

which minimizes an objective function in quadratic 

form. The problems in this chapter can be reduced to 

unconstrained least-squares problems, because there 

are no inequality constraints.

The method of Lagrange multipliers is a standard 

approach that finds the optimum, the local maximum 

or minimum of a function, of any equality-constrained 

problem. It is also called the method of Lagrangian 

multipliers. In our chapter, it has led us to the 

standard normal equations.

Exercises

Consider our standard grid (Fig. 6.12) and linearize 

its static equilibrium equation with respect to 

changes in force densities Δq and coordinates 

Δ x 
N
 . Apply the normal equations to the linearized 

equations to solve for Δq and Δ x 
N
 .

For a single node in our grid, change the initial 

Figure 12.15 Final design of the sports complex after nonlinear FDM
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coordinate ( x 
0
 ,  y 

0
 ,  z 

0
 ). Find the geometry for 

different weightings applied to the force densities 

and apply five iterations of Gauss–Newton’s 

method. What do you observe?

Similarly we can change some initial force densities  

q 
0
 . If we wish to constrain certain member forces 

instead of force densities, how would you approach 

this?

Subdivide the branch-node matrix C of our grid 

to an interior and exterior part. Now apply the 

constraint of equidistant length in the interior 

network and find the new geometry.

You have been asked to design another gridshell. 

For construction purposes, you want to constrain 

the lengths in the initial, undeformed state and 

thus prefabricate an equidistant mesh prior to 

erection. How would you formulate the optimi-

zation problem with this constraint? Hint: start 

from Hooke’s law of elasticity which gives a relation 

between the current and initial length.

Further reading

‘Einige Bemerkungen zur berechnung von vorges-

pannten Seilnetzkonstruktionen’ or ‘Some remarks 

on the calculation of prestressed cable-net struc-

tures’, Linkwitz and Schek (1971). This journal 

publication on FDM, written in German, did not 

yet mention ‘force densities’ explicitly, but they are 

intrinsic to the method. It discusses the method 

of least squares for application to the cutting 

patterns of the Munich Olympic Roofs, discussing 

constraints on forces and initial lengths.

‘New methods for the determination of cutting 

pattern of prestressed cable nets and their appli-

cation to the Olympic Roofs Münich’, Linkwitz 

(1972). This conference paper at the IASS is the 

first English publication on FDM.

‘Die Gleichgewichtsberechnung von Seilnetzen 

unter Zusatzbedingungen’ or ‘The computation 

of cable-nets in equilibrium under additional 

constraints’, Linkwitz et al. (1974). This paper 

includes constraints on (final) lengths as well, as 

would later be used in the example of the Multihalle. 

The constraints are expressed in forces rather than 

force densities, as in the later papers.

‘Analytical form finding and analysis of prestressed 

cable networks’, Gründig and Schek (1974). This 

is the first English conference publication on 

the approach discussed in this paper and specifi-

cally explains the form finding applied during 

the original design of the Multihalle as its central 

example. It also discusses the nonlinear approach 

presented in ‘The force density method for form 

finding and computation of general networks’, 

Schek (1974), particularly its shortcomings with 

regard to computational efficiency.

‘Formfinding and computer aided generation of 

the working drawings for the timber shell roof at 

Bad Dürrheim’, Gründig et al. (1988). This publi-

cation discusses the design and construction of the 

Solemar Therme.

Iterative Methods for Sparse Linear Systems, Saad 

(2003). This second edition book deals with 

numerical methods to solve sparse linear systems 

of equations, and includes a chapter on methods to 

iteratively solve normal equations.
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Tom Van Mele, Daniele Panozzo, Olga Sorkine-Hornung and 
Philippe Block

LEARNING OBJECTIVES

Formulate the search for a funicular network in 
compression that is as close as possible, in a 
least-squares sense, to a given target surface 
as a series of optimization problems.
Implement solvers for the different types of 
optimization problems.
Implement this method to optimize freeform 
shapes; and apply this method to evaluate 
the stability of structures under asymmetrical 
loading.

PREREQUISITES

Chapter 7 on thrust network analysis.

CHAPTER THIRTEEN

Best-fi t thrust network analysis
Rationalization of freeform meshes

Chapter 7 introduced Th rust Network Analysis 

(TNA) as a method for designing three-dimensional, 

compression-only equilibrium networks (thrust 

networks) for vertical loads using planar, reciprocal 

form and force diagrams. Th ese diagrams allow the 

high degree of indeterminacy of three-dimensional 

force networks to be controlled such that possible 

funicular solutions for a set of loads can be explored. 

By manipulating the force diagram (through simple 

geometric operations), the distribution of horizontal 

thrusts throughout the network is changed and diff erent 

three-dimensional confi gurations are obtained.

Th ere are infi nitely many possible variations of the 

force diagram, each corresponding to a diff erent three-

dimensional solution for given loads and boundary 

conditions. Th is provides virtually limitless freedom in 

Figure 13.1 (a) The compression-only design for the 
pavilion as form found in Chapter 7, and (b) the new 
(geometrical) proposal

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


158   TOM VAN MELE, DANIELE PANOZZO, OLGA SORKINE-HORNUNG AND PHILIPPE BLOCK

the design of three-dimensional equilibrium networks, 

but it makes it almost impossible to find the specific 

distribution of forces that corresponds to a specific 

solution, with a specific shape. For example, the 

required distribution of forces to achieve the upwards 

flaring edge of the design proposal depicted in Figure 

13.1b is not obvious, and finding it is by no means 

straightforward.

Therefore, in this chapter, we describe how TNA 

can be extended to find a thrust network that for a 

given set of loads best fits a specific target shape. We 

set this up as an optimization problem and discuss the 

implementation of an efficient solving strategy.

The brief

Chapter 7 described the design of a vaulted, unrein-

forced cut-stone masonry pavilion for a park in Austin, 

Texas, USA, that covers the stage and spectator area 

of a small performance area of 20m × 15m. The client 

has requested modifications to the shape developed in 

Chapter 7 to improve the integration of the pavilion 

into the surrounding landscape and allow access to 

its top surface to provide visitors with alternative 

views of the site and the vault. Although the dramatic 

asymmetry between the two sides of the vault is a key 

feature of the form, the client would prefer a deeper 

opening on the side of the shallow main arch to let 

in more light and make that side of the pavilion look 

more open and inviting.

The original design and the new proposal are shown 

in Figure 13.1. Key features of the new design are thus 

the smoother transition between the landscape and 

the structure on one side, and the flaring edge on the 

other.

We have been asked to determine whether the 

new, geometrically constructed shape is feasible for an 

unreinforced, masonry stone structure.

13.1  TNA preliminaries

Since this chapter describes an extension of TNA, we 

assume the reader to be familiar with its fundamental 

principles as presented in Chapter 7. Here, we briefly 

summarize those mathematical elements, notations 

and conventions of TNA that are required for the 

optimization algorithm.

Let  and   *  be two planar graphs with an equal 

number of edges, m. If  is a proper cell decomposition 

of the plane, and   *  is its convex, parallel dual, then  

and   *  are the form and force diagram of a (three-

dimensional) thrust network G that is in equilibrium 

with a set of vertical loads applied to its nodes, and has 

 as its horizontal projection. Two graphs are parallel 

if all corresponding edges are parallel, and convex if all 

their faces are convex. We call two graphs or diagrams 

reciprocal if one is the parallel dual of the other. The 

force diagram of a thrust network G is thus the convex 

reciprocal of the form diagram of G. A proper cell 

decomposition of the plane divides the plane into cells 

formed by (unbounded) convex polygons such that:

every point in the plane belongs to at least one cell;

the cells have disjoint (i.e. non-overlapping) 

interiors;

any two cells are separated by exactly one edge.

We can describe  as a pair of matrices V and 

C. V = [x|y] is an n × 2 matrix, which contains the 

coordinates in the horizontal plane of the i-th node 

in its i-th row. n is the number of nodes in . C is the 

branch-node matrix: an m × n matrix that contains 

the connectivity information of the graph of  (see 

Section 7.3.2). Note that C is the transpose of the 

incidence matrix of . The edges of , represented as 

vectors, can be extracted from V and C by computing 

the m × 2 matrix E = CV = [u|v], which contains the 

coordinate differences of the i-th branch in its i-th 

row. Therefore, the length of the i-th edge,  l 
i
 , can be 

computed by taking the norm of the i-th row of E. 

L is the m × m diagonal matrix of the vector of edge 

lengths l.  V * ,  C * ,  E * ,  L *  are defined equivalently for the 

reciprocal diagram.

The force densities q of the network are the ratios 

of the lengths of corresponding edges of   *  and :

 Q =  L −1  L * , (13.1)

with Q the diagonal m × m matrix of q.

The nodes of  are divided into two sets, N and F, 

that denote the (non-fixed) free nodes and the (fixed) 

support nodes, respectively. The heights of the free 

nodes of the thrust network G described by  and   *  

are computed as:
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  z 
N
  =  D  

N
  −1 (p −  D 

F
   z 

F
  ), (13.2)

with  D 
N
  and  D 

F
  the columns of D =  C  

N
  T
  QC corre-

sponding to the  n 
N
  free and  n 

F
  fixed nodes, respectively. 

p is the vector of external loads applied at the free 

nodes and  z 
F
  are the heights of the fixed support nodes.

13.2 Formulation of the problem

Let G be a thrust network generated from a pair of 

reciprocal diagrams  and   * , and S a target surface. 

Keeping the form diagram  fixed, our objective is to 

optimize the force diagram   *  such that the network 

G is as close as possible, in the least-squares sense, to 

the target S. The variables we are optimizing for are 

the nodes  V *  of the force diagram. Formally:

  argmin  
      V  * 

   
 

   ∑ 
i

   

 

    ( z 
i
  −  s 

i
  ) 2  (13.3)

  subject to   *  is the convex reciprocal of , (13.4)

where i runs over the nodes of  and  z 
i
  and  s 

i
  are, 

respectively, the height of the network and the surface 

at the i-th node.

Note that the heights  z 
i
  do not directly depend 

on the variables  V * . However, we can compute the 

heights  z 
i
  from the force densities q using equation 

(13.2). The energy is thus a function of q:

 f  (q) = ( z 
N
 (q) −  s 

N
  ) 2 . (13.5)

Therefore, to find the best-fit solution, we must search 

for the force densities q that minimize the energy 

according to equation (13.5) and allow for a force 

diagram   *  that satisfies constraint, expressed in 

equation (13.4):

 argmin ( z 
N
 (q) −  s 

N
  ) 2  (13.6)

 q

 subject to   *  is the convex reciprocal of .

In the following sections, we describe the strategy for 

solving this problem.

13.3 Overview

Starting from a given target surface S, the solving 

procedure consists of two main steps.

1. Generate a starting point:

a. choose a form diagram;

b. generate an initial force diagram;

c. optimize the scale of the initial force diagram.

2. Find a best-fit solution by repeating the following 

two-step procedure until convergence:

a. find the force densities q that minimize energy 

according to equation (13.6), ignoring the 

equilibrium constraints;

b. for the current force densities, find the force 

diagram   *  that is as parallel as possible to the 

form diagram.

We discuss each of the steps and substeps in detail in 

the following sections.

13.4 Generate a starting point

In this section, we discuss the generation of a starting 

point for the iterative part of the optimization process. 

First, we choose a form diagram and generate an 

initial force diagram, and then optimize the scale of 

this force diagram.

13.4.1 The form diagram

In order to be able to obtain a well-fitting thrust 

network for a given target, a force diagram must be 

chosen that is based on the target’s features. Our 

choice of form diagram for the target surface described 

in the brief is depicted in Figure 13.2b. Note that in 

comparison with the original diagram of Chapter 

7, we have added force paths that gradually divert 

horizontal forces to the supports before they hit 

the open edges. This provides finer control over the 

equilibrium of these edges and will, for example, allow 

the upward flaring edge to develop.
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13.4.2 An initial force diagram

To generate an initial force diagram, that is, a convex 

reciprocal of the form diagram, we use an iterative 

procedure. We start with the centroidal dual of the 

form diagram, rotated 90° as depicted in Figure 13.3a. 

The form diagram’s centroidal dual is the dual of which 

the vertices or nodes coincide with the centroids of 

the faces of the form diagram. The corresponding 

edges of the form diagram and this rotated dual are 

generally not parallel. Therefore, at each iteration of 

the procedure we perform the following calculations. 

First, we compute a set of target directions  t 
i
  for the 

edges of the new force diagram by averaging the direc-

tions of the (fixed) form diagram and the current force 

diagram:

  t  
i
  *  =  (    e 

i
 
 __ 

 l 
i
 
   +   

 e  
i
  * 
 __ 

 l  
 i
  * 
   )  /  (    e 

i
 
 __ 

 l 
i
 
   +   

 e  
i
  * 
 __ 

 l  
i
   * 
   ) , (13.7)

with  e 
i
  the i-th row of E, representing the i-th edge 

of the form diagram, and  l 
i
  its length; and, similarly,  

e  
i
  *  the i-th row of  E * , representing the i-th edge of 

the current force diagram, and  l  
 i
  *  its length. Note that  

e 
i
 / l 

i
  is constant, since the form diagram is fixed, and 

thus does not need to be recalculated at each iteration. 

Using these target vectors, the edges of the new, ‘ideal’ 

(i.e. parallel) force diagram are thus:

  e  
i
  *  =  l  

i
  *  t  

i
  * . (13.8)

Note that this new diagram cannot be properly 

connected, since its edges have the same lengths but 

different directions than before. Therefore, we search 

for a diagram that is similar to the ideal one, but 

connected, by solving the following minimization 

problem:

 argmin   ∑ 
 

   

 

    ( e  
i
  *  −  l   

i
  *  t  

i
  *  ) 2  (13.9)

 V*

 subject to  V  
0
  *
  =0 (13.10)

Note that without the constraint in equation (13.10), 

there are infinite graphs that minimize energy in 

equation (13.9), all identical up to a translation. Fixing 

a single node ( V  
0
  *
  ) to an arbitrary value makes the 

solution unique.

We repeat these steps until a convex reciprocal of 

the form diagram is found. The centroidal dual of the 

form diagram and the initial force diagram derived 

from it are depicted in Figure 13.3.

(a) (b)

Figure 13.2 (a) The form diagram of the original design, and (b) the modified form diagram used here.
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13.4.3 Scale optimization

In TNA, we can change the depth of a funicular 

network simply by uniformly scaling all horizontal 

forces, which is equivalent to uniformly scaling the 

force diagram. Higher and lower thrusts result in 

shallower and deeper solutions, respectively. Therefore, 

before starting the optimization process, we can reduce 

energy according to equation (13.5), without changing 

the distribution of forces, simply by changing the scale 

of the force diagram. The optimal scaling factor r is 

obtained by minimizing:

 argmin   ( z − s )  2  (13.11)

 
r

 subject to Dz − r p = 0, (13.12)

this is a linear least-squares problem subject to linear 

equality constraints and can be solved using the method 

of Lagrange multipliers. We rewrite the problem intro-

ducing additional variables, one for every equality 

constraint, obtaining the following Lagrange function:

Λ ( z, r, l )  =   ( z − s )  2  +  l T  ( Dz − r p ) 

 =  z T z − 2 z T s −  s T s +  l T   ( Dz − r p )  (13.13)

with l the Lagrange multipliers. The unique minimum 

of the Lagrange function is the solution we are looking 

for. Setting the partial derivatives of Λ equal to zero 

leads to the following linear system, the solution of 

which is the scaled thrust network and the scaling 

factor r:

 

⎡2 0 DT ⎤
⎢0  −  l T  0 ⎥
⎣D − p 0 ⎦  

⎡z ⎤
⎢r ⎥
⎣l⎦

 

=

 ⎡2s ⎤
⎢0 ⎥
⎣0 ⎦  

(13.14)

Figure 13.4 shows the scaled force diagram and 

corresponding thrust network in comparison with the 

target surface.

(a) (b)

Figure 13.3 (a) The centroidal dual of the form diagram, and (b) an initial force diagram, based on the centroidal dual

Figure 13.4 By uniformly scaling the force diagram we 
obtain a funicular network that is closer to the target surface
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13.5 Iterative procedure

In the previous section, we have generated an 

initial pair of reciprocal diagrams, and rescaled the 

force diagram such that the corresponding thrust 

network is, for that distribution of thrusts, as close 

as possible to the target. Rescaling the force diagram 

has changed the depth of the funicular solution, 

but the overall shape has stayed the same, because 

the proportional distribution of thrusts remained 

unchanged.

During the following iterative procedure, we redis-

tribute the thrust forces and thus change the shape 

of the thrust network until a better fit of the target is 

found. Each iteration of this procedure consists of two 

steps. In the first step, we optimize the force densities 

without taking into account the reciprocity constraint 

in equation (13.6) on the force diagram. In the second 

step of each iteration, we search for a force diagram 

that generates these optimized force densities and is 

as parallel as possible to the form diagram. We repeat 

these steps until a solution is found with optimal force 

densities and parallel diagrams.

13.5.1 Force densities optimization

To optimize the force densities, we minimize energy 

according to equation (13.5) using a gradient descent 

algorithm (Nocedal and Wright, 2000). In short, this 

means that we move from the current force densities 

to the next using

  q t+1  =  q t  − l  f  (  q t  )  (13.15)

with  f (q) the direction of maximum increase or 

decrease of f at q (i.e. the gradient) and l a step length 

that satisfies the strong Wolfe conditions (Nocedal 

and Wright, 2000).

The gradient of f can be efficiently evaluated in 

closed form:

   
∂f (q)

 ____ 
∂q

   =   ∂ __ 
∂q 

   (   (  Z 
N
  −  S 

N
  )  2  )  = 2 (  Z 

N
  −  S 

N
  )   
 ∂ z 

N
 
 ___ 

∂q
  , (13.16)

where  Z 
N
  and  S 

N
  are diagonal matrices corresponding 

to  z 
N
  and  s 

N
  respectively.

Using equation (13.2), the gradient of  z 
N
  can be 

written as

   
∂ z 

N
 
 ___ 

∂q
   =   

∂ (  D  
N
  −1  ( p −  D 

F
  z 

F
  )  ) 
  ____________ 

∂q
   (13.17)

 =   
∂ D  

N
  −1 
 ____ 

∂q
   ( p −  D 

F
  z 

F
  )  −  D  

N
  −1    
∂ ( p −  D 

F
  z 

F
  ) 
 _________ 

∂q
  

 =   
∂ D  

N
  −1 
 ____ 

∂q
   ( p −  D 

F
  z 

F
  )  +  D  

N
  −1   (  C  

N
  T
  C [   0      z 

F
    ]  ) ,

where we used

  D 
F
  z 

F 
 =  C  

N
  T
  QC [   0      z 

F
    ] . (13.18)

Finally, ∂ D  
N
  −1 /∂q can be rewritten using the identity 

(Petersen and Pedersen, 2008)

   ∂ A −1 
 ____ 

∂x
   = − A −1    ∂A

 ___ 
∂x

   A −1 . (13.19)

Applied to  D  
N
  −1  this gives

   
∂ D  

N
  −1 
 ____ 

∂q
   =  − D  

N
  −1    
∂ (  C  

N
  T
  QC [   I    

0
   ]  ) 
 __________ 

∂q
    D  

N
  −1  (13.20)

 = − D  
N
  −1  C  

N
  T
  C [   I    

0
   ]  D  

N
  −1 ,

where we used

  D 
N
  =  C  

N
  T
  QC [   I    

0
   ] . (13.21)

Substituting equations 13.20 and 13.17 in 13.16, and 

using equation 13.2, we get

 f (q) = −2   (  z 
N
  − s )  T 

   (  D  
N
  −1  C  

N
  T
  C [   I    

0
   ]   z 

N
  +  D  

N
  −1   C  

N
  T
   C [   0      z 

F
    ]  ) . (13.22)

This gives the final expression of  f ( q ) ,

   f ( q )  = 2 (  Z 
N
  −  S 

N
  )  D  

N
  −1  C  

N
  T
  Cz. (13.23)

In the evaluation of   f ( q ) , we need to compute  D  
N
  −1 . 

To avoid computing the dense inverse explicitly, we 

can compute  D  
N
  −1  C  

N
  T
  Cz indirectly by solving the equiv-

alent sparse linear system:

  D 
N
  x =  C  

N
  T
  Cz. (13.24)

Since  D 
N
  is symmetric and positive definite, we can 
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Figure 13.5 Result of the optimization process: the best-fi t funicular network for the given target surface and loads
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efficiently solve the system using the sparse Cholesky 

decomposition (Nocedal and Wright, 2000). We first 

compute the Cholesky decomposition of  D 
N
 :

  D 
N 

 = L L T  (13.25)

with L a lower triangular matrix. Then, we solve the 

system of equations

 Ly =  C  
N
  T
  Cz (13.26)

for y. This is done using forward substitution, since L 

is lower triangular. Finally, we find x by solving:

  L T x = y. (13.27)

13.5.2 Force diagram optimization

Given the current optimized force densities q, we 

search for the force diagram   *  that is as parallel as 

possible to the form diagram while generating these 

force densities.

This procedure is similar to the one discussed in 

Section 13.4. We first compute a set of target direc-

tions for the edges of   *  using equation 13.7. Then, 

we generate target lengths for the edges of   *  using 

equation (13.1),

  l   
i
  *   =  q 

i 
  l 
i
  (13.28)

Now we know the directions and lengths of the 

edges of the ideal   *  that generates the current force 

densities and is parallel to the form diagram. As 

before, this graph will generally not be connected. To 

compute a graph that is similar to the ideal one, but 

connected, we solve the same minimization problem 

as in equation (13.9).

The final result of the optimization process is 

shown in Figure 13.5. The figure depicts the scaled 

reciprocal diagram (Fig. 13.5a), which was the starting 

point for the optimization, and the final, optimized 

diagram (Fig. 13.5b). The thicknesses of the branches 

(Fig. 13.5c) visualize the distribution of forces in the 

thrust network, and the spheres (Fig. 13.5d) represent 

the deviation from the target surface.

13.6 Basic coding

Figure 13.6 is a flowchart that gives an overview of a 

complete implementation of the algorithm discussed 

in the previous section.

    

No

START

Define target surface S
and form diagram 

Generate loads p

Generate a starting point

Generate centroidal dual V*

Compute initial reciprocal V*

Rescale reciprocal V*

Optimize force diagram V*

V*Force diagram 

Convergence reached?
k < k

max

Yes

Optimize force densitites q

Iterative procedure

END

Figure 13.6 Flowchart of a complete implementation
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13.7  Assessment of the proposed 
design

A masonry structure is considered safe if a network of 

compressive forces contained within (the middle third 

or kern of ) the vault’s geometry can be found for all 

possible loading cases (see Chapter 7).

For most masonry structures, the dominant loading 

case governing their design is self-weight. Th erefore, 

to evaluate the feasibility of the proposed design, we 

fi rst use the algorithm described in Section 13.5 to 

fi nd the best-fi t thrust network for the self-weight 

of the design, off set the solution with the thickness 

used to calculate the self-weight, and then use the 

algorithm to search for thrust networks contained 

within the kern of the new geometry for other loading 

cases.

13.7.1 Self-weight

We can calculate the weight per square metre of the 

proposed design using a chosen thickness and the 

weight of the stone: 0.3m × 2,400kgm-3 = 720kgm-2. 

Th e equivalent distribution of point loads on the nodes 

of the form diagram according to their respective 

tributary areas on the target is depicted in Figure 13.7. 

Note that the compression-only solution captures the 

design intent of the client ve ry well and allows for the 

realization of the key features of the shape.

13.7.2 Additional live loads

For the further evaluation of all additional load cases, 

w e defi ne the geometry of the vault by taking the 

best-fi t thrust network determined in the previous 

step and setting it off  by 0.15m on both sides (Fig. 

13.8). As discussed, the structure can be considered 

safe if we can fi nd a thrust network within the kern 

of its geometry for all additional loading cases (see 

Section 7.1.3).

In a real project, there are many diff erent, additional 

loading cases and they should all be considered. 

However, here, we only discuss the case resulting 

from the allowed public access to the pavilion’s 

surface.

Figure 13.7 The self-weight of the structure distributed 
over the nodes according to their tributary areas

Figure 13.8 The new shell defi ned as an offset from the 
best-fi t thrust network (blue) for the structure’s self-weight

Figure 13.9 The self-weight of the vault combined with a 
hugely exaggerated additional point load
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Typical values are 5.0kNm-2 for patch and 7.0kN 

for point loads. In this example, a point load is applied, 

because it has a more noticeable effect on the vault. 

Furthermore, a much higher point load of 100kN is 

used, to further emphasize the effect. Note that this is 

roughly equivalent to Godzilla standing on one leg on 

the viewing platform. The location of the additional 

load is depicted in Figure 13.9.

diagram that radiates from the point of application 

of the additional load to the supports (blue in Figure 

13.10).

With this new form diagram and combined loads 

(self-weight and point load), we repeat the best-fit 

search to find the best-fit funicular network to the 

target surface. The result of this search is depicted 

in Figure 13.11. Note that, for such an extreme 

loading case, it is sufficient that the thrust network 

stays within the entire section of the vault (not just 

the middle third), although this would represent an 

equilibrium state at the onset of collapse. If such a 

solution cannot be found, the vault’s thickness should 

be modified; for example, by iteratively searching for 

the bounding box of all loading cases.

13.8 Conclusion

This chapter has shown how to find a thrust network 

that best fits a given target surface for a given set of 

loads, formulate this search as a series of optimization 

problems, and use appropriate and efficient solving 

strategies for each of them.

The presented technique was applied to the 

assessment of the structural feasibility of a vaulted 

masonry structure with a complex, geometrically 

designed shape (Fig. 13.4). This entailed the search 

for a best-fit thrust network for the dominant loading 

case of self-weight, the derivation of a new geometry 

from this result, and the assessment of the safety of 

the new geometry in all other loading cases.

Another important application of the technique 

described in this chapter is the equilibrium analysis 

of historic masonry vaults with complex geometry, 

such as the sophisticated nave vaults of the Church 

of Santa Maria of Bélem at the Jerónimos monastery, 

completed in the early sixteenth century, shown on page 

156. The approach to such an analysis is very similar 

to the previously discussed assessment of a design 

proposal. Provided that sufficient information about the 

geometry of the structure in its current state is available, 

the target surface can be taken as the surface that lies at 

the middle of the structure’s section, and an appropriate 

form diagram can be derived from the structure’s rib 

pattern and stereotomy. Otherwise, the procedure is 

exactly the same. The results for the nave vaults of the 

Jerónimos monastery are depicted in Figure 13.12.

Figure 13.10 To find a best-fit funicular network for the 
combination of self-weight and additional live load(s) we 
draw a new form diagram that provides appropriate force 
paths

Figure 13.11 Comparison of the best-fit thrust network 
corresponding to the original force pattern (blue) and to the 
modified force pattern (black). The modified pattern clearly 
produces a much better fitting result

In order to find a compression-only force network 

that fits within the newly determined kern of the vault, 

we simply run the algorithm as before using point 

loads that represent the combination of self-weight 

and the additional loading.

However, as before, it is important that we start 

with a form diagram that provides force paths along 

which the loads can ‘flow’ to the supports. Therefore, 

we superimpose a force pattern on the previous form 
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Key concepts and terms

A graph of a network of branches and node is 

a drawing that visualizes the connectivity of the 

network.

A planar graph is planar if it can be drawn on a sheet 

of paper without overlapping edges; in other words, if 

it can be embedded in the plane.

A dual graph is a graph with the same number of 

edges as the original, but in which the meaning of 

nodes and faces has been swapped.

The centroidal dual of a graph is the dual of which 

the vertices or nodes coincide with the centroids of 

the faces of the original graph.

The convex, parallel dual is a dual graph with convex 

faces and edges parallel to the corresponding edges of 

the original graph.

Reciprocal diagrams are two planar diagrams or 

graphs that are said to be reciprocal if one is the 

convex, parallel dual of the other. See Chapter 7 for 

an alternative definition.

Line search strategy is one of the two basic iterative 

approaches to finding a local minimum of an objective 

function; the other is trust region. It first finds a 

descent direction along which the objective function 

reduces and then computes a step size that decides 

how far it should be moved along that direction. The 

step size can be determined either exactly or inexactly.

A gradient descent algorithm is a type of line search 

in which steps are taken proportional to the negative 

of the gradient of the objective function at the current 

point.

Strong Wolfe conditions ensure that the step length 

reduces the objective function ‘sufficiently’, when 

solving an unconstrained minimization problem 

using an inexact line search algorithm. Strong Wolfe 

conditions ensure convergence of the gradient to 

zero.

Closed form means that a mathematical expression 

can be expressed analytically in terms of a finite 

number of certain well-known functions.

Cholesky decomposition is used in linear algebra for 

solving systems of linear equations. It is a decompo-

sition of a Hermitian, positive-definite matrix into the 

product of a lower triangular matrix and its conjugate 

transpose.

Exercises

Define a target surface and draw a form diagram 

according to the features (e.g. ribs, open edges) of 

the surface – for instance, within the plan of the 

standard grid (Fig. 6.12). Make sure to provide 

force paths that allow those features to develop.

For a simple target surface, draw a form diagram 

and an initial force diagram and compute and draw 

the corresponding thrust network. Try to manually 

(b) (c)(a)

Figure 13.12 (a) Rib and stereotomy pattern of the nave vaults of the Jerónimos monastery. Resulting (b) form diagram with 
sizing proportional to the forces in (c) the force diagram
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modify the force diagram such that a better fit of 

the simple target is obtained.

Compare the outcome of best-fit optimizations 

for the same target surface, using different force 

diagrams (i.e. allowed force flows).

For a simple target surface and a form diagram 

corresponding to the standard grid (Fig. 6.12), 

generate an initial force diagram and corresponding 

thrust network as explained in Chapter 7 consid-

ering only the structure’s self-weight.

Calculate the squared sum of the vertical distances 

between the nodes of the thrust network and the 

nodes of the target, as a function of the force 

densities in the edges of the network. Calculate 

force densities that make this squared sum smaller 

or, even better, as small as possible. Attempt to 

generate a force diagram with edges parallel to the 

form diagram and the length of the edges equal to 

the calculated force densities.

Increase the load on one of the nodes of the 

network. Draw the thrust network for the current 

force diagram. Repeat the steps of the previous 

exercise until a network is found that is close to 

the target again.

The architectural program for the Texas shell 

has changed. The architect now envisages a shell 

supported on the four corners and one central 

support. Attempt to generate such a target surface 

and draw a form diagram according to the features 

which include ribs and open edges. Hint: make 

sure to provide force paths that allow those features 

to develop.

Further reading

Numerical Optimization, Nocedal and Wright 

(2000). This book describes efficient methods in 

continuous optimization, including the gradient 

descent algorithm in Section 13.5.
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James N. Richardson, Sigrid Adriaenssens, 
Rajan Filomeno Coelho and Philippe Bouillard

LEARNING OBJECTIVES

Convert a structural optimization problem to a 
mathematical formulation.
Apply a genetic algorithm to solve an optimi-
zation problem.
Improve the connectivity of a grid on a pre- 
determined surface.

CHAPTER FOURTEEN

Discrete topology optimization
Connectivity for gridshells

Efficient design of gridshells has become a major 

challenge due to the need to account for several, 

sometimes conflicting, requirements including cost, 

but also safety and environmental impact. One 

particular challenge designers face is to make optimal 

use of, preferably renewable, resources. Generally 

speaking, the search for the best solution (according 

to a given criterion called ‘objective function’) is the 

central aim of optimization.

This chapter discusses the topology optimization 

of unstructured, or irregular, steel gridshells, where 

the objective is to minimize the gridshell’s overall 

weight. An example of an unstructured gridshell is 

the Webb Bridge over the river Yarra in Melbourne 

(see page 170), though its geometry was not derived 

through structural optimization. For the structural 

optimization of the science park gridshells, a Genetic 

Algorithm (GA) is employed. Finite element (FE) 

analysis is used to evaluate structural performance and 

to check the constraints.

The brief

A new science park needs a series of canopies. Each 

canopy measures 24m × 24m in plan. We propose 

a series of unstrained steel gridshell typologies: 

supported on all four sides, one on two and one on 

three sides of the square base, with large openings 

on the free edges of the canopy. Each canopy has a 

total internal height of 5m and the openings provide 

at least 12m × 3m of unobstructed access. The client 

Figure 14.1 Science park entrance buildings, architectural 
interpretation.
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has agreed to a concept of the architectural design of 

the canopies, shown in Figure 14.1. The grid systems 

are clad in either translucent or opaque plate material, 

creating interplay between diffuse natural light and 

shading.

14.1 Evolutionary algorithms

Genetic Algorithms (GAs), a subclass of evolutionary 

algorithms, are search techniques inspired by evolu-

tionary genetics and follow the Darwinian law of 

natural selection or survival of the fittest. In other 

words, in a random population of potential solutions, 

the best individuals are favoured and combined in 

order to create better individuals at the next gener-

ation. For structural optimization, the use of GAs is 

very attractive, as explained in Appendix C.

When considering structural problems, we can 

represent the structural variables in data structures 

often called ‘chromosomes’. In the case of structural 

optimization, these variables depend on the type of 

optimization considered. Normally, the chromosome 

will consist either of member sizing, nodal position 

(shape) or topology variables, or of some combi-

nation of these three types. The capability to handle 

variables of different types at once is one of the great 

strengths of GAs as an optimization procedure. GAs 

allow, for example, for combination of continuous 

shape variables with discrete topology variables in a 

single chromosome representation.

A large number of chromosomes, each representing 

one structure, are considered by the GA at any given 

time. These chromosomes are called ‘individuals’, and 

make up the current ‘population’, of the GA. In single-

objective optimization, the chromosome is associated 

with a value (such as the mass), of which we would 

like to find the optimal value. The function mapping 

the chromosome to this value is called the objective, or 

fitness function. Furthermore, there may be structural 

properties associated with the chromosome we wish 

to know in order to ensure that the structure adheres 

to certain structural requirements. For example, the 

maximal stresses in the structure should not exceed 

a certain limit, ensuring satisfaction of the stress 

constraint. The mapping of the chromosome to these 

constraint values often occurs by way of structural 

analysis such as the FE method, called at least once 

per iteration of the GA.

GAs process populations of individuals. The size of 

the population considered can be chosen by the user, 

often based on experience. Successive populations 

are generated from the previous population by way 

of three genetic operations: selection, crossover and 

mutation (see Appendix C).

It is worth noting that the parameters controlling 

these genetic operations will be of great importance 

to the efficacy of the algorithm. So far, no universal 

method exists to optimally choose these parameters, 

and the experience of the user will play a dominant 

role in the choice of values for the parameters.

14.2 Optimization method

This section outlines the general framework of the 

algorithm used in the optimization of the gridshell 

START

Generate initial population

Move nodes
using MLS interpolation

Calculate loads
using Voronoi diagrams

Modify topology

Evaluate fitness
using FE analysis

Stop? Selection

Crossover

Mutation

END

Offspring

Yes

No

Figure 14.2 Genetic algorithm applied to gridshells
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topologies (Fig. 14.2). Circular steel sections, with an 

outer diameter of 88.9mm and a thickness of 8mm, 

are chosen as the gridshell members.

The objective is the minimization of the gridshell’s 

overall weight:

   min   
 x
   

 

   f  ( x )  =  ∑ 
i

   
 

  A 
i
  l 
i
  x 

i
   (14.1)

subject to constraints discussed in Section 14.2.4, 

where  is the density, and  A 
i
 ,  l 

i
  and  x 

i
  are respectively 

the cross section area, length and design variable 

associated with element i. The value of the objective 

function is found by simple geometry, taking the 

density of steel to be = 7,850kgm-3.

14.2.1 Topological design space

Each structure comprises forty-nine connection points 

or ‘nodes’ at which the steel bars are welded together. 

The form-finding approach, based on dynamic relax-

ation for gridshells, illustrated in Chapter 8, was used to 

determine the global form of the canopies. By pinning 

boundary nodes on certain sides of the gridshells and 

leaving others free, we achieve different shapes that can 

accommodate different architectural programs. Three 

typologies are presented in Figure 14.3.

The first form is supported on all four sides. The 

second form is a barrel vault, supported on two 

opposite sides. The third form is supported on three 

of the four sides, giving the gridshell a wide opening 

on one side.

In our approach, the ‘ground structure’ defines 

the allowable connectivities: the topological design 

space. The ground structure specifies the upper limit 

of the design space and expresses all allowable nodal 

connectivities.

When implementing discrete topology optimi-

zation problems, one constraint is particularly 

problematic (Richardson et al., 2012). The kinematic 

stability of a discrete structure, such as a gridshell, is 

intimately linked to the topology variables. While 

virtually all other constraints are present in sizing 

and shape optimization, the kinematic stability is 

exclusively of interest in topology optimization. The 

characteristics (including the dimensions) of the 

stiffness matrix K in the FE formulation are affected 

by changes in topology, that is, in the node connec-

tivities, since the number of elements and nodes can 

vary. Significantly, too, unlike other constraints on the 

structure, the relative size of the solution set defined 

by this constraint in relation to the total search space 

decreases dramatically with an increasing number of 

degrees of freedom in the system.

Gridshells tend to have many nodes and relatively 

few connections between the nodes. The allowed 

connectivities should be such that the shell does not 

become too thick structurally (Fig. 14.4). This means 

that randomly generated structures are almost always 

kinematically unstable. This constraint is a binary 

one, unlike others which can be represented by a 

real number. It is therefore difficult to meaningfully 

penalize the fitness of the individual proportionally 

to the value of this constraint. Randomly generating 

the initial population leads to convergence problems: 

the algorithm struggles to find solutions which can be 

suitably evaluated.

(a) (b) (c) 

24m
24m

24m
24m 24m 24m

Figure 14.3 Three canopy typologies: ground structures 1, 2 and 3. The topologies of these structures are used as the 
allowable connectivities for the computation of the three optimized structures
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One way of dealing with this problem is to provide 

the GA with a certain percentage of kinemati-

cally stable individuals in the initial population. To 

generate these individuals, various algorithms can be 

developed. It is, however, important to introduce suffi  -

cient diversity into the initial population to prevent 

the algorithm from focusing on only a limited part 

of the search space. Th e algorithm implemented here 

is illustrated in Figure 14.5. In this case, a stable core 

structure is fi rst produced. Next groups of elements 

are added onto the stable core to incorporate other 

nodes. Once all nodes are connected the procedure is 

stopped.

14.2.2 Geometric design space

Th e shape variables relate to x- and y-coordinates 

of the nodes. Th ese shape variables can be either 

continuous or discrete. Th e vertical z-coordinates are 

constrained to a surface interpolated through the 

original gridshell nodal positions. In this way the 

overall equilibrium form is maintained, even though 

strictly speaking the shape changes at the nodal level. 

A Moving Least Squares (MLS) (Lancaster and 

Salkauskas, 1981) interpolation scheme is used to 

fi nd an appropriate z-coordinate for the given x- and 

y-coordinates as stipulated by the shape variables. 

Limits are placed on the shape variables to avoid 

overlapping of nodes or nodes switching position, by 

limiting them to less than half of the original distance 

between the nodes.

14.2.3 Load calculation

Building codes tend to prescribe a range of loading 

cases that need to be considered in the analysis 

of a structure. Th ese include asymmetric loading, 

distributed loading and point loads. From the point of 

view of the designer, the choice of loading to consider 

in the optimization process is important. In this case 

it is chosen, for the sake of consistency, to consider an 

evenly distributed loading consisting of an external 

static load and an approximation of the self-weight 

of the entire canopy. Th e building’s cladding transfers 

the loads to the nodes of the grid shell. Th e forms 

considered are relatively fl at, without excessively steep 

sides and the structure’s self-weight is assumed to be 

relatively low. It is reasonable to approximate this 

by an evenly distributed load. We wish to approx-

imate the loading on each node. Th is loading will 

be proportional to the horizontal projection of the 

surface area carried by the node, and is therefore a 

function of the geometrical positions of the nodes, 

which are variable. An automated scheme, such as 

a Voronoi decomposition of the horizontal plane 

projection of the structure, is essential to be able to 

(a)

(b)

Figure 14.4 Cross sections of (a) a single layer gridshell and 
(b) a gridshell with overlapping connectivities

z

x y

Figure 14.5 Generation of kinematically stable members of the initial population
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calculate the loading at each point in the design space. 

A Voronoi diagram is a spatial decomposition based 

on distances between a set of points (using Delaunay 

triangulation), such as the nodes in the structures 

we are considering. A horizontal projection of the 

nodal positions is used to approximate the loading 

on the structure. Once the Voronoi polygons corre-

sponding to each node have been assembled, their 

areas are calculated and the loading transferred to an 

equivalent point load applied to the node in the FE 

analysis of the structure.

14.2.4 Constraints

Three constraints are considered in the following 

designs, namely the maximal stresses in the elements, 

the local buckling of the elements, and the total 

deflection of the structure. All three of these values 

can be obtained by an FE analysis. The global buckling 

of the structure is not addressed since this requires 

a costly nonlinear calculation. However, once the 

optimal structure subject to these three constraints 

has been found, it is essential that the structure also be 

checked against nonlinear global buckling.

During the optimization, the maximal stress 

in the structure was constrained using the relation  

  max  −  |   
i
  |  ≥ 0, where    max  is the maximum allowable 

(yield) stress of the material, and   
i
  is the stress in 

element i.

The local Eulerian buckling constraint is

 − (   
 i
  cr  +   

i
 ) ≥ 0, (14.2)

where

    
 i
  cr  =   

−    2  E 
i  
  I 

i
 
 ______ 

 A 
i 
  l  

i
   2  K   2 

  , (14.3)

where, for element i,  E 
i
  is the Young’s modulus of the 

material,  I 
i
  the second moment of area of the cross 

section,  A 
i
  the area of the cross section,  l 

i
  the length and 

K the buckling constant associated with the connec-

tions between elements. In the calculations, the Young’s 

modulus of steel was taken to be E = 200 × 1 0 9 Nm-2 

and the strength    max  = 355 × 1 0 6 Nm-2. Since we are 

dealing with a preliminary design method, where the 

exact rigidity of the joints is unknown, we choose an 

effective length factor, or buckling constant, of K = 0.9, 

between the pinned condition (K = 1.0) and one side 

pinned, one side fixed (K = 0.8).

The total deflection of the structure is constrained 

to    
z
  max  = 1/200 of the minimum span (24m). This 

constraint is    
z
  max  −   

z
  ≥ 0, where   

z
  is the vertical 

deflection of the structure. Finally, the nodes are 

constrained to a range of 2m around their position 

in the initial design, for both x- and y-coordinates of 

node j:  ( 1.0m −  |  x 
j
  |  )  ≥ 0 and  ( 1.0m −  |  y 

j
  |  )  ≥ 0, where 

node j is not on the fixed boundary of the structure.

14.2.5 Analysis procedure

In order to achieve a smooth interface between the 

optimization and analysis procedures, the parameters 

outputted within the optimization loop, representing 

a single structure, are interpreted by an intermediate 

script. This script prepares the necessary FE analysis 

inputs, calls the FE program, and interprets the FE 

outputs which are in turn taken as responses by the 

optimization controller. Numerous analysis procedures 

can be employed to evaluate individual structures as 

long as this automation is made possible. In this way, 

the procedure can easily be adapted for more advanced 

simulation types, other than the linear elastic analysis 

employed here. For this analysis, we made use of truss 

elements with three degrees of freedom per node.

14.2.6 Evolutionary optimization

Once the algorithm has assessed the fitness of the 

individuals in the population, it will consider whether 

the stopping criterion has been met (a satisfactory 

convergence of the algorithm). If an unsatisfactory 

condition exists, the algorithm will perform another 

iteration. Changes are made to the population by 

selecting individuals to be retained, discarding others, 

introducing new individuals, mutation of chromo-

somes and mating of pairs to produce offspring. The 

exact mechanism is dependent on the method selected 

and the parameter values chosen.

14.3 Optimized connectivity

In order to illustrate some of the important aspects of 

discrete topology optimization, we allow the loading 

(combined self-weight and external loading) to vary 
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Solutions Loading (kNm-2) Mass of structure (kg) Active constraint

3 5,098 limit on node positions

5 5,161 local buckling

7 5,630 buckling

8 6,393 buckling

Table 14.1 Overview of results of topology and shape optimization for gridshell supported on all sides, for various loadings

Solutions Structure Mass of structure (kg) Active constraint

barrel vault 7,330 deflection and buckling

canopy with opening 6,048 local buckling

Table 14.2 Overview of results for a topology and shape optimization of a barrel vault and canopy with one opening for a 
3kNm-2 loading
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between 3kNm-2 and 9kNm-2 and observe the effect 

the loading has on the final shape and topology of 

the structure. The optimal solution in each case is 

found at the extremity of the feasible solution set. 

The constraint bounding the feasible solution set at 

this point is often called the ‘active constraint’. In 

Table 14.1 an overview of the optimal solutions for 

a selection of the loadings is given. For 9kNm-2 the 

buckling constraint was violated for all possible values 

of the design variables, therefore no feasible solution 

could be found.

For practical purposes, one loading value (3kNm-2) 

is chosen to optimize the topology and shape of the 

remaining gridshells. Results of the optimization of 

the two remaining canopy typologies are found in 

Table 14.2. To achieve these results, the GA param-

eters in Table 14.3 were found to produce good results.

14.3.1 Discussion

In Figure 14.6, the selected topologies are shown 

in a possible configuration for the science park 

implementation.

Significant reductions in the mass of the struc-

tures can be achieved through topology (and shape) 

optimization of the gridshells. In Table 14.4, the 

un-optimized ‘ground structures’, shown in Figure 

14.3, are compared to the optimized structures shown 

above. These values also correspond to a loading of 

3kNm-2.

The ground structure designs meet the criteria for 

this loading case. Note that the constraint values are 

near the limit permitted in two of the examples. From 

an analysis point of view these initial structures may be 

seen as very acceptable for implementation. However, 

these intuitive designs can be vastly improved, as can 

be seen from the mass reduction achieved through 

optimization, in this case between 35% and 50%. 

The active constraint plays an important role in 

the solutions. In the case of the shell supported 

on four sides, this can easily be seen. For small 

loadings (around 3kNm-2), the limits on the nodal 

positions are the active constraints, since the stresses 

in the structure are too low to cause buckling or large 

displacements, or are low compared to the strength. In 

terms of the shape variables, this represents the least-

mass configuration. Increasing the loading to 5kNm-2 

activates the buckling constraint. Several of the nodes 

shift position relative to the previous case to account 

Parameter Four sides pinned Two sides pinned Three sides pinned

Number of topology variables 19 39 70

Number of shape variables 6 14 27

Population size 500 800 1,200

Stable initial population size 400 640 960

Crossover rate 0.8 0.8 0.8

Mutation rate 0.4 0.2 0.2

Table 14.3 GA parameters for the gridshell problems with 3kNm-2 loading

Figure 14.6 Architectural representation of canopies 
selected after optimization

Ground structure Mass 
(kg)

Stress 
constraint

Deflection 
constraint

Local buckling 
constraint

Mass reduction after 
optimization (%)

1 9,956 0.1112 0.0538 0.759 48.8 

2 11,260 0.2403 0.789 0.8325 34.9 

3 10,484 0.258 0.847 0.96 42.3 

Table 14.4 Comparison of optimized and ground structure gridshells
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for this. However, the topology is unchanged. For a 

loading of 7kNm-2, the topology changes dramatically, 

forming two bands of material with less material at 

the corners. This may be due to the fact that the load 

path is shortened, by allowing for more load to be 

transferred to the supports in the middle of the edges 

of the footprint. By doing so, a stiffer structure, with 

shorter elements (less susceptible to local buckling) 

emerges. When a loading of 8kNm-2 is applied, the 

topology is modified so that this form is made more 

prominent with the addition of four new elements. 

The loads are redistributed so that the critical elements 

in the previous case do not buckle under this higher 

loading.

14.4 Conclusions

The approach adopted here can be seen as a filtering 

process on the shape variables, or an approximation 

of the global shape optimization. No global shape 

optimization is carried out, but rather the form of 

the structure is chosen a priori through form finding 

since this eliminates many poor solutions from the 

search space. By considering the shape and topology 

variables, large savings can be made in the material 

required for the structures. The configuration of the 

gridshell elements is quite dissimilar to the traditional 

approach of using a repeated pattern of regularly 

spaced elements.

It should be emphasized that the method presented 

here is intended for preliminary design. Further inves-

tigation can be carried out on the structures to 

assess their feasibility as designs in practice. Often 

objectives such as cost or environmental impact are 

more appropriate for structural design. These objective 

functions may be more complex to define, but the GA 

framework lends itself well to this adaptation. One 

major simplification is the use of pinned connections 

between the elements in the calculations. This is justi-

fiable since we assume only one load case, which the 

form finding ensures will induce only axial forces in 

the members. In practice, welding of the steel sections 

will provide additional moment stiffness in the joints 

when other load cases, such as asymmetric loading, are 

considered. This will give the shells greater resistance 

to global buckling and other issues relating to the 

shell’s stability. More detailed analysis can be carried 

out using commercial FE software with several other 

load cases and combinations, modelling it as a more 

realistic shell with moment connections.

From an architectural standpoint, the structural 

optimization dictates forms which invite speculation 

about the design process itself. Given the use of the 

buildings, this architecture is a good fit for the site. 

In the context of a science park, the structures could 

serve as an introduction to the field of optimization 

for visitors to the park.

Key concepts and terms

Discrete topology optimization is a form of struc-

tural topology optimization in which the variables 

considered are taken from a discrete set. In structural 

optimization discrete topology optimization often 

deals with truss-like structures, where the existence or 

non-existence of individual elements is controlled by 

binary variables.

A genetic algorithm (GA) is a class of algorithm 

inspired by the principles of natural selection. The 

algorithm mimics the processes of genetic mutation, 

crossover and selection to iteratively improve the 

performance of solutions to the optimization 

problem. Along with evolution strategies and genetic 

programming, GAs are instances of evolutionary 

algorithms.

An objective function in optimization is a function 

which represents the quantity to be either minimized 

or maximized. In structural optimization this is often 

the mass of the structure or the maximal displacement 

of the structure.

Constraints define the feasible region of an optimi-

zation search space. A constraint is a condition which 

must necessarily be satisfied in order for a solution 

to be considered valid. Typically in structural optimi-

zation constraints such as a limit on the maximum 

stresses in a structure are encountered.

Kinematic stability is satisfied when enough connec-

tivity between the nodes exists that no mechanisms 

are present in the structure and can therefore be seen 

as a constraint on the topology of a structure.

A Delaunay triangulation of a set of points is 
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a triangulation of the convex hull of the points 

considered, such that none of the points lie within the 

circumcircles of the triangles.

A Voronoi diagram, also known as a Dirichlet tessel-

lation, is a spatial decomposition. This diagram divides 

space into a number of polygons, or Voronoi cells, 

based on distances between a set of points, such that 

each polygon contains exactly one of those points and 

every vertex in a given polygon is closer to its gener-

ating point than to any other. A Voronoi diagram is 

dual to the Delaunay triangulation.

Moving least squares (MLS) is a regression method 

used to approximate or interpolate a continuous 

function (such as a smooth surface) known only at 

a limited set of sample points. The method uses a 

weighted least-squares measure, assigning a higher 

influence to the samples belonging to the vicinity of 

the point to be constructed.

Exercises

The current approach deals with topology optimi-

zation, and we wish to include the sizing of the 

cross-sectional area of the elements in the problem. 

How would you introduce these variables into the 

genetic algorithm chromosome parameterization? 

How is the chromosome for each structure changed?

Most gridshells are lightweight structures. Their 

structural behaviour is largely influenced by wind 

load. How could the optimization problem be 

reformulated to consider the effect of wind?

Optimize the grid connectivity for the standard 

grid (Fig. 6.12), based on a previously form-found 

surface shape. Apply a gravity load of 1kNm-2 in 

your optimization.

Further reading

Topology Optimization: Theory, Methods and 

Applications, Bendsøe and Sigmund (2003). This 

book discusses continuum as well as discrete 

topology optimization.

Genetic Algorithms in Search, Optimization, and 

Machine Learning, Goldberg (1989). This book is 

the main reference on genetic algorithms.

‘Genetic algorithms in truss topological optimi-

zation’, Hajela and Lee (1995). This journal paper 

represents an important early investigation on 

discrete structural topology optimization and the 

use of genetic algorithms to solve these problems.

‘Truss topology optimization by a modified genetic 

algorithm’, Kawamura et al. (2002). This journal 

paper discusses kinematic stability in topology 

optimization of discrete structures.

Genetic Algorithms + Data Structures = Evolution 

Programs, Michalewicz (1996). This book is one 

of the main references on evolutionary algorithms.

‘Multiobjective topology optimization of truss struc-

tures with kinematic stability repair’, Richardson et 

al. (2012). This journal paper discusses kinematic 

stability of truss structures, and the effect of the 

kinematic stability on multi-objective genetic 

algorithms for topology optimization.
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Peter Winslow

CHAPTER FIFTEEN

Multi-criteria gridshell optimization
Structural lattices on freeform surfaces

LEARNING OBJECTIVES

Discuss how the structural efficiency of 
gridshells can be approached as a multi-
objective design problem.
Review how computer graphics algorithms can 
be applied to generate and manipulate grid 
layouts on freeform surfaces.
Implement an optimization solver that finds a 
Pareto optimal set of designs.
Create optimal gridshell patterns on predeter-
mined surfaces.

Creation of efficient gridshell structures to support 

complex surface forms, such as the roof of the New 

Milan Trade Fair, Italy (see Fig. 15.1 and page 180), 

is a major challenge. The widespread availability of 

NURBS modelling software currently allows designers, 

architects and sculptors to precisely create a huge 

range of different geometries. However, it is not always 

clear how to create an efficient gridshell structure to 

support a given freeform shape. The challenge is 

compounded by the many competing requirements 

and performance objectives that are often associated 

with architectural engineering projects – for example, 

buckling, deflection, multiple load cases, cladding, 

Figure 15.1 Roof of the New Trade Fair, Rho-Pero, Milan, Italy, 2002–2005, by Massimiliano and Doriana Fuksas architects, 
with a grid mapping onto a complex surface

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


182   PETER WINSLOW

constructability and aesthetics – and at the end of 

the process design freedom needs to remain with the 

architect and the engineer.

One approach for tackling such freeform 

engineering design problems is to break them down 

into three stages:

1. Surface form – conceptual shape by the designer.

2. Grid layout – defining member layout (also referred 

to as ‘rods’) on a given surface.

3. Member size – section sizes are chosen once 

geometry is defined.

This approach differs from, say, a ‘hanging chain’ form-

finding approach in which surface form and grid 

layout are interconnected. This logical, three-stage 

approach is relatively widespread among engineering 

practice working on bespoke architecture, and tools 

exist for tackling each stage. The focus of this chapter 

is specifically on the ‘grid layout’ stage, that is, design 

and optimization of a lattice or grid of structural 

members. It is assumed that the surface geometry is 

given – for example, by a sculptor or concept form-

finding process – and that detailed member sizing will 

be carried out later. By way of example, Figure 15.2 

shows a structural grid that has been mapped onto a 

given, fixed, surface form.

performance criteria, whilst not constricting the 

designer to a single design solution which is optimal 

in theory but unworkable in practice.

The brief

A local sports ground needs a canopy with a span 

of 54m and a height of 10m to provide weather 

protection to spectators. The doubly curved surface is 

given a priori and shown in Figure 15.3. The primary 

structure will consist of a single layer grid of steel 

tubes. The ends of the arching surface are fixed against 

translation. Our aim is to develop an efficient, regular 

layout for the lattice structure on this given surface.

Figure 15.2 Example grid mapping on a freeform surface

Many gridshells are built from steel or timber 

sections. However, the generic approach presented 

in the following pages can be considered applicable 

to a wider range of materials; for example, ribbed 

reinforced concrete, ribbed steel shells, or fibre 

reinforced polymers. The key challenge is to lay out 

material strength and stiffness in response to multiple 

Figure 15.3 Mapping and optimization of grid on a given 
surface

15.1 Pareto optimal grid layouts

A wide range of techniques do exist for the creation 

and optimization of gridshell structures, some of 

which can be found elsewhere in this book. Since the 

example in Figure 15.3 is based on a given surface 

geometry, well-known methods such as hanging 

chains and membrane inflation are not applicable. 

Instead, a dedicated grid layout mapping and optimi-

zation tool is required.

Traditionally, optimization and form-finding 

approaches focus on a single important criterion. For 

instance, an equal mesh net mapping technique will 

create a grid in which every member has equal length 

but node angles vary, see Figure 15.4. This would 

not be cost effective for any project where the nodes 

are more expensive than the members, and there is 

no guarantee that such a grid is structurally efficient 

under multiple load cases.

In practice, many real structural engineering 

design problems do have a number of competing 

objectives. Even pure optimization algorithms are 
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traditionally used to find a single optimal answer 

to single objective problems; for example, member 

sizing optimization. Novel alternative methods must 

be sought for problems such as grid layouts which 

have a wider influence on aesthetics, constructability 

and structural performance; a single solution from a 

‘black box’ is not sufficient. Therefore, the approach for 

this case study will be to find a Pareto optimal set of 

different grid designs, thus allowing the engineer to 

see and understand the trade-offs between competing 

objectives.

Figure 15.5 plots eight different (hypothetical) 

designs in objective space. A design is said to be 

Pareto optimal if it is better than every other design 

for at least one of the performance objectives. So, for 

instance, design C is better than every other design in 

the population for either objective 1 or objective 2. In 

some cases, it is better for both objectives (see design 

D). Multi-objective solvers find the Pareto optimal set 

of designs (A, B and C) through a series of iterative 

or evolutionary steps. However, is design A better 

than design C? That depends on whether the designer 

perceives objective 1 to be more important than 

objective 2; the choice lies with the designer, which is 

a key strength of multi-objective design optimization.

Prior to delving deeply into the details of grid 

layout geometry – member lengths, nodal coordinates, 

connectivity and so on – it is useful to first explore the 

advantages that varying the grid layout can bring.

15.2 Objectives and constraints

The eventual aim is to optimize the layout of steel 

tubes on the surface. Long-span shell design tends 

to be governed by stiffness behaviour, therefore two 

design objectives are considered for the first stage of 

this example: first, to minimize peak deflection due to 

dead load; and second, to maximize the eigenbuckling 

load factor under wind and dead loads acting together.

This optimization is subject to four types of 

constraints and requirements: first, the grid is triangu-

lated, consisting of steel tubes, where main members are 

200mm diameter and 5mm wall thickness, and trian-

gulation members are 100mm diameter with 5mm wall 

thickness; second, the target spacing between nodes in 

the grid should be 1 to 3m (due to cladding require-

ments); third, the structural members should follow 

smoothly curving paths to give visual and structural 

continuity, as per Figures 15.1, 15.2 and 15.3; and fourth, 

the grid connectivity should be regular, but lengths of 

members and positions of nodes can be varied.

The dead load consists of the self-weight of the 

grid of steel tubes (which is a function of the grid 

geometry, so will vary) and a cladding and services 

load of 1.5kNm–2. The ultimate wind load is defined 

in Figure 15.6.

2m 2m

generator 
line 1

generator 
line 4

generator 
line 2

generator 
line 3

Figure 15.4 Equal mesh net grid layout, in plan

F
1

F
2

D
B

C

A

Figure 15.5 Bi-objective design space, showing the Pareto 
frontier, and where  F 1  is the first, and  F 2  is the second design 
objective
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In order to tackle this design optimization problem, 

a number of key steps are made:

1. Obtain the surface geometry (already given).

2. Define suitable grid geometry design parameters.

3. Create a complete grid layout geometry from these 

design parameters.

4. Evaluate the grid against the performance objectives.

5. Improve the grid by a multi-objective optimization 

algorithm.

6. Repeat steps three to five.

15.3 Unit cell

This section is about understanding and exploring 

the building of our gridshell, the ‘unit cells’. For 

our example, a grid is used which consists of such 

regular repeating unit cells, as is the case for many 

gridshell structures. Although the spacing and the 

angle between members may vary, the connectivity 

is as shown in Figure 15.7. If the angle between the 

rods, , is reduced then the grid structure will get 

stiffer in the x-direction because the primary rods are 

more closely aligned with the x-direction. Conversely, 

if  is increased, then the grid structure will get stiffer 

in the y-direction. At this stage it is not necessary to 

think about the (x, y) coordinates of every node; the 

important geometrical parameters for this regular grid 

are only the angle  and the perpendicular distance 

between the rods, spacing L.

Consider this grid on a macroscopic scale, and 

replace many members and nodes by a piece of 

continuum shell, of equivalent stiffness, made from 

a hypothetical anisotropic material. This is analogous 

to Fibre Reinforced Polymer (FRP) laminate plate 

theory (Kueh and Pellegrino, 2007), where an ortho-

tropic material stiffness matrix is calculated, instead of 

modelling individual fibres. When designing a larger 

piece of structure, this material can be aligned with 

the directions in which it is most needed.

One might imagine that a triangulated grid 

is relatively isotropic, so it is worth investigating 

whether there is a significant benefit to varying rod 

angles. In order to quantify the magnitude of potential 

anisotropy, we need to further consider just the unit 

cell. Taking the unit cell and applying a deformation 

1.5 kNm-2

0.5 kNm-2

Figure 15.6 Wind pressure loading (normal to surface)
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Figure 15.7 (a) Regular triangulated grid, with (b) unit cell extracted and stretched in the y-direction in order to determine 
(c) macroscopic membrane stiffness, as a function of rod angle α
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(Fig. 15.7), enables the macroscopic stiffness to be 

found in different directions.

The method of periodic boundary conditions (Kueh 

and Pellegrino, 2007) can be used more formally to 

determine the equivalent continuum stiffnesses for a 

unit cell. This is typically implemented using a beam 

finite element model of the unit cell, which has a large 

number of constraint equations in order to precisely 

apply the different boundary conditions and defor-

mation modes. It is a rigorous numerical method to 

achieve what has been shown diagrammatically in 

Figure 15.7. Some illustrative membrane stiffness 

results for a range of different angles  are shown in 

Figure 15.7. Note that exactly the same considerations 

apply to the bending stiffness of the unit cell.

From this figure it can be seen that changes in the 

angle between the primary sets of rods lead to significant 

changes in the equivalent anisotropic stiffness of the 

unit cell. For instance, increasing  from 60° to 90° gives 

approximately 60% lower stiffness in the x-direction but 

a 60% higher stiffness in the y-direction. Thus there is 

substantial scope to tailor the rod directions and ‘tune’ 

the stiffness properties of the triangulated gridshell.

As an aside, it is interesting to note that the 

equivalent (anisotropic) continuum material could 

now be applied to a shell finite element mesh on 

a given surface, that is, mimic the behaviour of a 

gridshell by using a continuum shell with user-defined 

material (Winslow et al., 2010). This has parallels 

with Free Material Optimization (FMO) (Bendsøe 

and Sigmund, 2003), and means that one can begin 

to explore the structural behaviour prior to looking 

at geometry in any great detail. However, there are 

clearly practical limitations precisely because there 

is no explicitly defined node or rod geometry. Note 

that FMO is related to the homogenization method 

(Chapter 17). FMO works directly with the design 

of the material tensor, after this process one may use 

inverse homogenization to look for the composite that 

realizes the previously optimized material tensor.

15.4 Geometry generation

This section presents a method which takes rod angles 

as key input parameters and generates full gridshell 

geometry, of sufficient fidelity for further optimization 

and beam finite element analysis.

15.4.1 Prerequisites

The first step is to discretize the given surface (initially 

represented with NURBS, see Figure 15.3) as a 

triangulated surface with triangular facets. Practically, 

one way to do this is to use a proprietary FE surface 

meshing tool (although it is never directly used for 

any FE analysis). This discretization facilitates the 

use of discrete differential geometry to synthesize and 

manipulate grid geometry on the surface.

It is vital to have a suitable surface coordinate 

system (surface parameterization) which allows us to 

map a two-dimensional grid into three-dimensional 

space. If the starting point for our shell structure 

was a NURBS surface, then it will inherently have a  

( u,v )  surface coordinate system – and that is practi-

cally all that is often required to calculate the  ( u,v )  

coordinate of each node in the triangulated surface 

mesh. However, depending on how the surface was 

created by the designer, this coordinate system may be 

too distorted, non-continuous (e.g. multiple NURBS 

surfaces stitched together), or may not exist (e.g. if 

the surface is a triangulated mesh created by digital 

scanning of a physical model).

Surface parameterization has been the subject of 

considerable study in computer graphics, for reasons 

of texture mapping and surface re-meshing. Ideally we 

would like a length-preserving (and thus also angle-

preserving) parameterization but in practice this is not 

possible for freeform surfaces (only if the surface has 

zero Gaussian curvature). A conformal parameteri-

zation (angle-preserving) mapping is adopted instead.

We start by using a relatively simple method to 

define directions for the two sets of rods on the 

surface. At any point on the surface we need two 
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Figure 15.8 Rod angles as design parameters, interpolated 
over each of the four regions
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parameters: the angle between the rods, ; and the 

rotation of the structural grid relative to the surface 

coordinate system, . Therefore, parameters  and  

are defined, at a small number of key points on the 

surface, by shape functions used to give a piecewise 

linear interpolation. For six key points, this gives 

twelve (geometrical) design parameters (Figure 15.8).

At any point on the surface the directions for 

the primary rods, s and t, are defined relative to the 

original surface coordinate system  ( u,v )  (Figure 15.8).

15.4.2 Rod path plotting

After defining two direction fields on the entire 

surface for the primary sets of rods, the original surface 

coordinate system is disregarded. It is now necessary 

to plot continuous rod paths for these two directions 

in order to create a complete structural geometry, 

using discrete differential geometry techniques.

Figure 15.9 shows rod paths sketched onto one of 

the rod direction vector fields. One way of achieving 

this is to pick a start point for a single rod path and plot 

it out in a step-wise manner such that it is tangential 

to the vector field. However, if the vector field has 

non-zero divergence (or just a small amount of noise), 

it is very difficult to control the spacing between rod 

paths. Mathematically this is done by finding two 

suitable scalar potential functions on the surface Ω

u = U (  x 
Ω
 , y 

Ω
 , z 

Ω
  ) ,

 v = V (  x 
Ω
 , y 

Ω
 ,z

Ω
 ) , (15.1)

such that the contours of these functions are tangential 

to the two rod direction fields.

The functions U and V, according to equation 

(15.1), define a mapping from the surface Ω in  R 3  to 

the planar  ( u,v )  domain ( R 2 ). The scalar value of U is 

the local u-coordinate, and the scalar value of V is the 

local v-coordinate.

If, at any point on the surface, the contour lines 

of U are tangential to the rod direction vectors, s and 

t, then the gradient of U is perpendicular to the rod 

direction vectors (dot product is zero). Therefore if the 

following equations are satisfied

 ∫
Ω
     (   U  s )  2  dA = 0

  ∫
Ω
     (   V  t )  2  dA = 0 (15.2)

then contours of U and V would represent ‘perfect’ rod 

paths.

This type of approach is used in computer graphics 

for subdividing surfaces based on principal curvature 

lines (Ray et al., 2006) and for principal stress trajec-

tories (see Chapter 16). However, before attempting 

to solve these equations, an additional scaling term is 

added to promote an even distribution of rod paths 

over the surface.

If the magnitude of the gradients of U and V 

were both unity, then there would be no distortion or 

variation of rod spacing, L = 1. However, for any vector 

fields, s and t, on a given surface it will almost never 

be possible to find rod paths which precisely follow 

the vector directions and also have constant spacing 

(only if the vector fields happen to be divergence free 

and the surface is developable). Therefore the aim is 

to minimize a global ‘energy’ functional, which is a 

measure of spacing distortion and direction distortion. 

So,

min.  E 
1
  =  ∫

Ω
      (   (   U  s )  2        +   (   ‖   U ‖  2  − 1 )  2  ) dA, (15.3)

min.  E 
2
 = ∫       (   (   V  t )  2        +   (   ‖   V ‖  2  − 1 )  2  ) dA, (15.4)

where  is a scalar weighting value (typically between 

0 and 10) which controls the trade-off between 

direction and spacing L of the rod paths. The given 

surface, which was previously converted to a trian-

gulated mesh, has p nodes and q triangular facets. 

Therefore, equations (15.3) and (15.4) can be evaluated 

as a sum over all triangles T in the surface mesh,

U = 4
 

U = 3
 

U = 2
 

U = 1
 U

Δ

Figure 15.9 Potential function U defined on surface, fitted 
to first set of rod direction vectors
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 E 
1
  ∑ 

T=1

   

q

     ∫
T
   
     (   (   U  s )  2     +      (   ‖   U ‖  2  − 1 )  2  ) dA. (15.5)

The function U is piecewise linear over any given 

surface, that is, a value of u will be defined at each 

node p in the triangulated surface mesh, with a 

linear interpolation over each triangular facet. As a 

result,  U is constant over each triangle, and if s is 

calculated at the centroid of each triangle (Fig. 15.10), 

the ‘energy’ functional becomes

 E 
1
  ∑ 

T=1

   

q

     (   (   (   U )  
T
    s 

T
  )  2     +      (   ‖   (   U )  

T
  ‖  2  − 1 )  2  )  A 

T
  , (15.6)

where  A 
T
  is the triangular facet area.

set of equations (the u value at every node of the 

triangulated mesh) is used as the starting point for 

either equation (15.6) or a more stable nonlinear 

formulation,

min.  E 
1
  ∑ 

T=1

   

q

     (   ‖   (   U )  
T
  −  s 

T
  ‖  2    

    +      (   ‖   (   U )  
T
  ‖  2  − 1 )  2  )  A 

T
 , (15.8)

either of which can be solved using the quasi-Newton 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method 

(Press et al., 2007).

It is then repeated with vector field t and scalar 

potential V, to give values  ( u,v )  at every node in 

the triangulated mesh. Due to the piecewise linear 

nature of the scalar potentials the contour lines can be 

extracted numerically and plotted, as shown in Figure 

15.11.

From this primary grid, it is necessary to calculate 

the location of nodes and populate the connectivity 

matrix for the primary beam finite elements. The well-

structured surface coordinate system  ( u,v )  means that 

it is then straightforward to add secondary structures: 

triangulation members, edge beams, infill panels and 

so on. The end result is a high-fidelity model ready for 

finite element analysis.

The parameter  from equation (15.6) gives 

control over the spacing L of the rod paths, see 

Figure 15.12. If  is considered as a design variable, 

then the design space can be significantly increased. 

This may be useful if we might need near-parallel 

rod paths for fabrication reasons, or if perhaps some 

areas of the gridshell are working much harder than 

others, scope to significantly vary the spacing L is 

beneficial.

15.5  Designing and optimizing a 
grid structure

The previous section has shown how to synthesize 

full grid geometry, starting from sparsely defined rod 

directions. But what should those directions be? One 

approach would be to pick these directions manually, 

as shown for the freeform surface in Figure 15.13. 

This in itself could be considered as an interesting 

sketching and design tool.
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ŷ

^

Figure 15.10 Definition of triangular facet, T, for rod 
path plotting. Each corner node has a position in global 
coordinate system N and an associated value of the 
piecewise linear scalar potential U

In practice, the convergence of this set of nonlinear 

equations is highly dependent upon the starting 

point. Therefore, for the purposes of this exercise, the 

starting point is found using a slightly different linear 

formulation,

 min.  E 
1
  ∑ 

T=1

   

q

      ‖   (   U )  
T
  −  s 

T
  ‖  2  A 

T
  , (15.7)

which can be solved reliably using the Conjugate 

Gradient method with Jacobi Preconditioning 

(PCGM) (Press et al., 2007). The solution from this 
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(a) (b)

(c) (d)

(e) (f )

(a) (b) (c)

Figure 15.11 Process for assembling gridshell geometry, rod directions (a) 1 and (b) 2, contours of potential functions (c) U 
and (d) V, (e) primary grid from contour overlay and (f) complete structure, including triangulation rods and infill panels

Figure 15.12 Contour function U fitted to rod directions (a) ω = 0.01, very good direction control, poor spacing control; 
(b) ω = 1, good direction control, good spacing control; (c) ω = 10, poor direction control, very good spacing control
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15.5.1 Multi-objective genetic algorithms

An alternative approach is to use an optimization 

algorithm, which will iteratively refine the rod direc-

tions in response to the multiple design objectives 

(defined in the brief ). A Multi-Objective Genetic 

Algorithm (MOGA) is used for this purpose. A wide 

range of MOGAs exist (Deb, 2001). Most work on 

broadly similar principles:

1. Generate an initial population of designs.

2. Evaluate performance of the designs using finite 

element analysis.

3. Select the best designs in the population as parents 

for the next generation, using two metrics:

a. Pareto optimality: is the design Pareto optimal? 

If not, the algorithm will rank designs by how 

close they are to Pareto optimality.

b. Clustering: how similar is this design to other 

designs in the population? Promoting diversity 

in the population leads to better exploration of 

the design space.

4. Create ‘child’ designs by taking design variables 

from two parents and carrying out crossover and 

mutation.

5. Evaluate performance of the child designs and 

then add to population of designs.

6. Repeat steps three to five to evolve the population 

over a number of generations. For example in 

Figure 15.5, designs D and E could be parents to 

create the improved child designs A and C.

The non-dominated sorting genetic algorithm 

II (NSGA2) is used here; it is widely considered 

to be the high-quality benchmark by which other 

multi-objective algorithms are measured. Our imple-

mentation (Bleuler et al., 2003) includes functions for 

selection of parents and for mutation and crossover 

in order to create child designs using a real-valued 

representation (as opposed to bit-strings).

15.5.2 Performance evaluation and practical 
implementation

Structural performance objectives are evaluated for 

large numbers of designs; for example, by establishing 

an automated link to an off-the-shelf finite element 

package, via the Application Programming Interface 

(API) or batch mode. Any analysis method that is 

Figure 15.13 Automatic generation of complex grid geometry on freeform surface, from sparse user-defined rod directions
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available in a typical engineering design office will 

then be available to the optimization routine. For other 

projects, the performance objectives of concern to the 

engineer may be very wide ranging – for example, 

geometrical, constructability or material mass criteria 

– this is considered in Section 15.5.4. These objectives 

can be calculated directly by user-written functions.

The flowchart representing the optimization 

software program is shown in Figure 15.14, in this 

case for a population of 100 designs.

evaluated individually, as described in Section 15.5.2. 

The results for the performance objectives, deflection 

and buckling can be seen in Figure 15.15.

At each generation in Figure 15.15 there is clearly 

a trade-off between the two competing objectives: 

some designs are better at resisting buckling due to 

the asymmetric wind load, whilst others are better at 

resisting deflection under dead load. Even after a large 

number of iterations, the designer still retains control 

over the design, that is, they can choose between the 

100 efficient structural designs, based on perceived 

importance of the multiple objectives and aesthetic 

appeal of individual designs. Two designs (Figs. 15.15a 

and 15.15b) from the 100 generation are shown, 

in plan. For comparison purposes, a non-optimized 

conventional design is also shown, consisting of 

straight rods which are ±30° from the original  ( u,v )  

NURBS surface coordinate system (Fig. 15.15c).

After ten generations of evolution, the conventional 

design has been surpassed and after 100 generations 

the performance gains are 66% lower deflection and up 

to 35% higher buckling load. The mass is (nominally) 

held constant at 41 tonnes for all designs in this 

optimization process. Note that even the conven-

tional gridshell geometry has every rod a slightly 

different length and every node at a slightly different 

angle – due to the surface double curvature and the  

( u,v )  parametric distortion – so may not be easier to 

construct than the structurally optimized designs.

15.5.4 Case study advanced results

The design can be taken a step further by adding 

new design variables and performance objectives. This 

enlarges the design space and incorporates more 

practical design considerations. The brief becomes: 

minimize four objectives:

total mass of steel;

the inverse of the buckling load due to wind;

deflection under dead load;

warping of worst case quadrilateral panels;

with the following design variables:

rod direction angles  and  at each of the six key 

design points;

START

END

Is gen < 100 ?

Convert NURBS to triangulated
surface mesh

Input parameters (rod spacing,
member sizes, load cases, objectives)

Randomly generate 100 sets
of rod directions

Generate 100 different
grid geometries

Build FE models

Evaluate two objective values
for each grid geometry

Selection

Crossover

Mutation

Yes

gen = gen + 1

gen = 1

No

Figure 15.14 Flowchart for software program

15.5.3 Case study preliminary results

Using a population of 100 designs, variable crossover 

probability of 75% and variable mutation probability 

of 5%, the MOGA was run for 100 generations. At 

each generation every design in the population is 
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target rod spacing L (0.5m to 3m);

rod smoothing parameter , see Figure 15.12;

diameter of primary rods (0.05m to 0.2m);

diameter of secondary triangulation rods (0.05m 

to 0.1m).

The optimization algorithm is run for 500 genera-

tions with a population of 100; results from the final 

generation are shown in Figure 15.16.

These graphs show a final population with a wide 

spread of designs which are either Pareto optimal 
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Figure 15.15 Results from the multi-objective optimization process
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Figure 15.16 Results from four-objectives optimization, where (a) is the optimal trade-off surface. Marker size is directly 
proportional to panel warping objective
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or near Pareto optimal (although the four-dimen-

sional objective space makes it hard to visualize on 

a two-dimensional page). A diverse pair of designs 

is shown in Figure 15.17. The engineer and architect 

can explore trade-offs between performance objectives, 

and have the freedom to pick a structure from this 

population before moving on to more detailed design. 

The final design would need further stress checks and 

a nonlinear buckling analysis.

Key concepts and terms

Multi-objective optimization is the process of simul-

taneously optimizing or improving more than one 

performance objective.

A Pareto optimal set is a group of structural design 

solutions, each of which is better than all other design 

solutions with respect to at least one of the (multiple) 

performance objectives.

Clustering, in the context of this chapter, is the 

phenomenon where a large number of designs within 

the genetic algorithm population become very similar 

(such that the architect or engineer would not view 

them as distinct designs). Instead, specific parts of the 

algorithm are needed to promote diversity.

Surface parameterization is the two-dimensional 

(u,v)-coordinate system which is defined on our 

three-dimensional shell surface, that is, it is a one-to-

one mapping between two- and three-dimensional 

domains. Imagining contour lines of u and v drawn 

on a shell surface then, a length-preserving param-

eterization would show u-lines and v-lines forming 

a square grid (only possible on flat or singly curved 

surfaces), and an angle-preserving parameterization, 

or conformal parameterization, parameterization 

would show u-lines and v-lines intersecting at right 

angles but the lines themselves could be curved.

Non-uniform rational basis spline (NURBS) is a 

mathematical means of defining freeform surfaces 

defined by a set of control points, which allow a 

user-friendly creation and modification of shapes. 

The degree and knot matrix are other parameters 

describing a NURBS. It is widely used in modelling 

software and could be considered as the standard 

way of describing and modelling freeform shapes in 

computer-aided design (CAD).

A unit cell is a basic structural unit which, when 

repeated many times over, forms the grid structure.

Exercises

The advanced case study in this chapter had four 

objectives. What could additional structural objec-

tives relating to the grid layout be? How could this 

Figure 15.17 Two designs from the Pareto optimal trade-off 
surface

15.6 Conclusions

This chapter has shown how surface parameterization 

techniques can be used to create and control the layout 

of a grid structure. This acts as a tool for designers 

to create efficient, optimized structures to support a 

given surface form. The guiding principle is that if a 

structural material or building block is not isotropic, 

then it should be arranged so as to make the best use 

of its properties.

Multi-objective optimization techniques find 

a Pareto optimal set of designs, thus the designer 

can better understand trade-offs between different 

performance objectives, even for complex problems. 

In contrast to many other optimization techniques, 

the designer is not forced to pick a single ‘optimal’ 

design, but instead can choose from the final diverse, 

optimized population.
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grid layout optimization be integrated with optimi-

zation of surface form and member sizes? Discuss 

how implementing these objectives influence the 

optimization and its results.

Imagine a tool which allows the user to sketch rod 

directions at a few key locations on the surface, and 

then automatically generates a complete gridshell 

structure. How might this be implemented? More 

advanced methods for defining rod directions could 

be considered; for example, Fisher et al. (2007).

If the rod directions would be defined at a larger 

number of points on the case study surface, what 

effect would this have on the optimization process 

in terms of speed of performance and performance 

of the generated designs?

Define and implement an optimization solver that 

finds a Pareto optimal set of designs for two 

objectives.

Using a predetermined NURBS surface with a 

10m × 10m footprint, find the optimal grid layout.

Further reading

‘Mesh parameterization: theory and practice’, 

Hormann et al. (2007). This paper describes surface 

parameterization techniques and aspects of discrete 

differential geometry.

Multi-Objective Optimization using Evolutionary 

Algorithms, Deb (2001). This book is widely 

regarded as the definitive book on the topic.

‘ABD matrix of single-ply triaxial weave fabric 

composites’, Kueh and Pellegrino (2007). This 

paper describes the process of using periodic 

boundary conditions to represent the behaviour of 

a woven composite using an homogenized stiffness 

matrix (Kirchhoff plate).

‘Multi-objective optimization of freeform grid 

structures’, Winslow et al. (2010). This paper 

presents details for optimization of gridshell 

layouts using a type of surrogate FE analysis model, 

with anisotropic shell elements rather than a lattice 

of beam elements.

Topology Optimization: Theory, Methods and 

Applications, Bendsøe and Sigmund (2003). This 

book covers all aspects of topology optimization, 

by two of the leaders in this field.

‘Periodic global parameterization’, Ray et al. (2006). 

This publication describes the detailed mathematics 

of this advanced parameterization technique.

Numerical Recipes 3rd Edition: The Art of Scientific 

Computing, Press et al. (2007). This book is a great 

reference for anyone writing algorithms or code 

in C/C++, it has mathematical derivations and 

working code for a wide range of problems.
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Panagiotis Michalatos and Sawako Kaijima

LEARNING OBJECTIVES

Discuss how to apply shape modifiers to, and 
structurally optimize, the shape of a shell.
Apply the eigenvectors, calculated from the 
Laplacian matrix, as shape modifiers.
Use the principal stress vector field to trace 
curves as the basis for a structural pattern.

CHAPTER SIXTEEN

Eigenshells
Structural patterns on modal forms

The problem of shape optimization through shape 

modification, and that of pattern generation that 

determines the placement of ribs, reinforcements, or 

openings, have attracted considerable attention.

This chapter explains sequential use of shape and 

pattern optimization, explaining how to (structurally) 

optimize a shell shape, and subsequently find an 

orthogonal surface pattern, in our examples derived 

from the principal stresses. Both processes consider 

the intrinsic structural and geometric properties of 

the shell, with the dual objective of improving struc-

tural performance, while at the same time achieving 

a degree of aesthetic consistency between structure 

and its formal expression. In addition, we offer ways 

in which designers can exercise control over the 

optimization definition, and hence, the outcome of 

the optimized shape, based on their design objec-

tives. This is to avoid optimization based on a singular 

relationship between the form and the structure, and 

to obtain solutions that integrate the architectural 

objectives and structure effectively.

Shape optimization utilizes standard optimization 

algorithms such as simulated annealing. Given an 

initial shell, the problem is to find a deformation of 

that shell described by a normal displacement at each 

point. The space of possible deformations is infinite 

and in order to reduce the input parameters of the 

optimization algorithm, we first create a set of o basis 

displacement functions  f 
i
  with desired properties. The 

final outcome will be a linear combination of these 

displacement functions,  a 
1
    f 

1
  +  a 

2
    f 

2
  + ... +  a 

o
    f 

o
 , and 

the optimization algorithm needs only to search for 

their o coefficients  a 
i
 . The basis displacement functions 

cover either the entire shell, or part of the shell, in 

order to provide control over the areas of the shell we 

wish to optimize.

Structural patterns are networks of curves whose 

geometry is intrinsically linked to the structural 

properties of the surface, and they indicate paths 

of desired material continuity or reinforcement. The 

patterns are determined by superimposed vector fields 

such as principal stress directions. An early precursor 

to this philosophy is Pier Luigi Nervi’s 1951 Gatti 

Wool Mill, shown on page 194. Aldo Arcangeli, one 

of the engineers at Nervi’s office, proposed following 

the isostatic lines of the principal bending moments 
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of a floor slab for its rib structure (Nervi, 1956). This 

chapter presents all the algorithms involved, defined 

over orthogonal grids. This simplifies the presen-

tation considerably, improves the optimization speed, 

and provides the additional advantage that the input 

can be in the form of images, literally painted by 

the designer. However, all the processes would work 

equally well, albeit slower, for arbitrarily discretized 

domains.

Throughout this chapter we generate imagery, 

called ‘eigenshells’, which constitute an integrated 

environment for the interactive investigation of such 

systems. The term ‘eigenshells’ is a play of words. ‘Eigen’ 

is a German word, roughly translating to ‘character-

istic’, ‘own’, or ‘self ’ and appears in the mathematical 

term ‘eigenfunction’, which is what we used in order to 

generate the basis displacement functions. In addition, 

this term describes the formal outcome, displacement 

and pattern, which is driven by intrinsic geometric 

and structural properties of the shell itself.

The brief

The local zoo has organized a design competition 

for the entrance to their new rhinoceros habitat. 

The entrance has a building on either side and it is 

possible to support our canopy on both the ground 

and the two buildings. The decision is made to design 

a quadrilateral gridshell with glazing to provide as 

much daylight as possible. At this stage, different 

footprints and boundary conditions are explored 

for the gridshell: a square, triangular, circular and 

more arbitrary footprint, touching the ground and/or 

connected to the adjacent buildings.

16.1 Outline of the process

Shape optimization and structural pattern optimi-

zation can be performed individually or collectively. 

Here, we assume the collective case, where we address 

the improvement of a global shell geometry using 

shell optimization, followed by structural patterning 

over the improved shell. The outline of the proposed 

procedure is shown in Figure 16.1.

Pattern optimization

 

 

 < 
max

 ?

Yes

No

START

Define initial shape, boundaries,
load cases and grid

Compute discrete Laplacian and
eigenvectors from scalar fields

Randomly sample combinations of
eigenvector coefficients

Build FE mesh and perfom
linear elastic analysis

Input vector field of
principle stress directions

Extract stress lines, apply scaling
and reparameterize

Apply manual corrections to pattern
and generate structure

Linearly combine basis functions
and add to z-coordinates

Select basis functions

Shape optimization

Simulated annealing

END

Figure 16.1 Flowchart for eigenshells and structural 
patterning
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16.1.1 Shape modification

Before discussing the specifics of the structural 

problem, we consider a generic way of describing our 

problem, which is not related to structural properties, 

that is, to find a ‘nice’ set of shape modifiers for a given 

shape, which will allow us to search a solution space 

using some optimization algorithm and generate a 

pattern on the result, so that we can control the direc-

tionality and scaling according to some criteria.

In general, it is not practical to optimize a shape 

by assigning a displacement variable to every node of 

the geometry (described as a mesh) because it leads 

to systems with numerous variables for optimization, 

and, more importantly, most algorithms will yield 

solutions characterized by considerable geometric 

noise (Fig. 16.2).

modified by changing the linear combination of these 

eigenfunctions. The eigenfunction computation of the 

Laplacian matrix is carried out using the Arnoldi 

algorithm, which is a common method to compute 

eigenvalues. The domain of the eigenfunctions does 

not have to coincide with the shell; this allows for 

partial optimization (Fig. 16.5a). Furthermore, these 

eigenfunctions can be made to vanish at the bound-

aries, which is an ideal property in cases where we 

want to preserve the geometry of the perimeter of a 

shell, that is, impose boundary conditions (Fig. 16.5b).

Given the number of variables involved in shape 

optimization problems, stochastic methods such as 

genetic algorithms and simulated annealing have been 

widely adopted in the past. For the shape optimi-

zation, we selected simulated annealing owing to 

its simplicity of implementation, assuming a single 

objective function.

16.1.2 Structural analysis

The problem becomes specifically structural because 

we use a Finite Element (FE) analysis step in the 

objective function of the optimization process, and 

we employ the principal stress directions to drive the 

pattern. The technique would remain valid if we were 

to use some solar analysis results for the optimization 

phase and some fabrication/geometric constraints for 

the patterning phase.

16.1.3 Principal stress directions

Structural pattern optimization deals with the gener-

ation of structural grid-like patterns that specifically 

follow the principal stress directions. In this case, 

we adopted a method used in computer graphics – 

the most active field of research in computational 

geometry. The selected algorithm (periodic global 

parameterization algorithm with curl reduction 

(Ray et al., 2006)) not only allows us to generate 

consistent networks of orthogonal curves following 

the stress directions, in effect, quadrangulating the 

surface, but also allows designers to control the 

scaling of the pattern by manipulating a simple 

scalar field (Fig. 16.6). The decoupling of pattern 

directionality and pattern scaling offers interesting 

design opportunities and makes it possible to map 

(a) (b)

Figure 16.2 Result of applying simulated annealing 
to optimize (a) a cantilevering plate, using each node’s 
displacement as a separate optimization variable, yielding (b) 
geometric noise

Therefore, it is desirable to define appropriate ways 

to deform a shape, which can cover a wide range of 

solutions with the least number of variables when 

searching for an improved shape. With information 

regarding the definition of the shape to be optimized 

– for example, if it is defined by some parameterized 

function or NURBS – one could use the parameters 

of the function or the control points of the NURBS 

surface as optimization variables. In our case, we opt 

to find a set of shapes that are intrinsically linked to 

the geometry of the shell, which allow the designer to 

select the types of deformations that are visually satis-

factory. For this purpose, we used the eigenfunctions 

of a discrete Laplacian defined over the shell (Figs. 

16.3 and 16.4). These functions define scalar fields 

over the shell and form a series of standing waves of 

increasing spatial frequency. The shape of the shell is 
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Figure 16.3 First few eigenfunctions of a circular potential. The scaling of the waves follows the gradient with higher 
frequencies to the right of the disc
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Figure 16.4 First few eigenfunctions of a circular potential with a linear gradient.The scaling of the waves follows the gradient 
with higher frequencies to the right of the disc
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different structural or design parameters to the two 

aspects of the pattern. For example, it is conceivable 

that the directionality of the grid will be controlled 

by the principal stress directions, and the scaling by 

the magnitude of stress, lighting requirements, or 

fabrication constraints.

16.2 Input

The most important primary inputs in our method 

are the initial geometry of the shell and the support 

conditions. For simplicity, we present examples in 

which the only load case is the self-weight. However, 

the method could handle any other load case or 

combination of load cases. In addition, the designer 

can define two scaling scalar fields over the given 

shell (either as a projected image or as colour per 

vertex information). The first field determines the 

region of the shell domain that will be a candidate 

for shape optimization as well as the relative scaling 

of shape oscillations. The second field determines 

the relative scaling of the pattern. Secondary inputs 

will be generated from a static analysis of the shell 

structure. These are either global results, such as 

maximum deflection used in the shape optimization 

phase objective function, or local element results, such 

as principal stress directions used in the structural 

pattern generation stage.

16.3 Shape optimization

Here, we use the terms ‘displacement’ (as in 

displacement map) for modifications to the initial 

shell shape and ‘deflection’ for the displacement of 

nodes as a static analysis result.

In general, the shape optimization phase can be 

summarized as follows. We wish to find a height 

Figure 16.5 Shape optimization (top) within a subdomain 
(smaller triangle within larger triangle), and (bottom) full 
optimization with vanishing boundaries

(a) (b) (c) (d)

Figure 16.6 Controlling the scaling of the pattern through that of the underlying vector field. (a) The stress lines of slab with 
two linear supports, (b) pattern with no scaling, (c) scaling roughly proportional to stress and (d) exaggerated scaling
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displacement field for the given shell or a region of 

the shell that may or may not preserve z-coordinates 

on the boundaries, and minimizes a certain objective 

function related to the structural performance of the 

shell. The region for shape optimization is defined as a 

scalar field over the shell. The nodes of the m × n grid 

will have values ranging from 0.0 to 1.0. Areas with a 

potential value of 0.0 will form the potential well, that 

is, the region that the optimization basis function will 

fill, and 1.0 will remain fixed.

The problem formulated consists of three parts: 

optimization variables, objective function and 

optimization.

16.3.1 Optimization variables

‘Displacement field’ refers to some discrete scalar 

function that moves each node on our shell upward 

or downward along the z-axis. The most generic 

formulation would allow each point on our grid 

to vary independently, resulting in an optimization 

search space of 2,500 dimensions for a 50×50 grid. 

This would usually yield some random solution with 

considerable noise (wide variations in height from 

one node to the next, see Fig. 16.2) that is often 

undesirable as an architectural solution. Therefore, we 

introduce several ways to control the optimization 

results. We consider noise reduction, introduction 

of simpler displacement functions, optimization area 

specifications and variable scaling.

Noisy solutions contain high frequencies of height 

variation. From signal analysis, we know that in order 

to avoid such frequencies, it is better to operate in 

the frequency domain of a signal, cut off the high 

frequencies, and convert the signal back to the time 

or space domain. Another approach is to consider the 

problem as a search for a shape modifier that is a linear 

combination (weighted sum) of simpler displacement 

functions of acceptable smoothness (frequency ≈ scale 

of height variation). We enforce an additional constraint 

on these functions, that is, they should vanish near 

boundaries, which may or may not coincide with the 

shell boundary. Thus, we can search for local modifi-

cations of the shell or modifications that preserve 

the shell boundaries. We may also want to include 

solutions that exhibit high frequencies on certain parts 

of the shell and lower frequencies on others.

All the requirements stated above can be fulfilled if 

the shell displacement field is composed of the eigen-

functions of a certain discrete Laplacian operator. The 

discrete Laplacian is a very large square matrix with 

as many elements in a row as there are nodes on our 

shell (see Section 16.6.1). This matrix corresponds to 

the connectivity matrix of the underlying FE mesh. 

The eigenfunctions of the Laplacian matrix if plotted 

back on the original geometry, form standing waves of 

increasing frequency, similar to the modes of vibration 

of a membrane with a given boundary. The eigenfunc-

tions are ordered by increasing frequency so that we 

can select the first few eigenfunctions (low frequency = 

smoother functions  less curvature variations); they 

vanish near the boundary of the potential well, and 

from the viewpoint of design, they reflect the intrinsic 

properties of the shell shape.

In order to modify the shape of the shell, we simply 

need to multiply each eigenfunction by some weight 

factor and add them together in order to obtain a 

displacement field for the coordinates of the nodes 

of the shell. In addition, we can add a variable scalar 

field to the Laplacian matrix. This field will modulate 

the frequencies of the standing waves so that these 

become denser in regions of low potential values.

16.3.2 Objective function

Now that we have a generic description of the shape of 

our shell, we need to define an objective function, that 

is, an evaluation criterion for each design outcome. At 

present, for simplicity, we shall employ the maximum 

deflection calculated by a linear elastic analysis as a 

rough measure of stability, and as a single objective 

function. Since the selected optimization algorithm 

does not depend on the specifics of the objective 

function, any other more refined criteria of structural 

performance would also suffice.

Here, the structural analysis is performed using 

an FE model with four-node shell elements that 

are a combination of a Mindlin plate element and a 

standard membrane element.

16.3.3 Optimization

As mentioned, we want to find the coefficients of the 

selected height modifier eigenfunctions that minimize 
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the deflection of the shell. By using the eigenfunc-

tions, we need to find only a few coefficients instead 

of searching a large space with every node’s height as 

a parameter. Figure 16.7 shows the FE results based 

on some optimized, linear combination of the first 

few eigenmodes shown. From all variations generated 

by simulated annealing (varying only ten coefficients), 

these exhibited the lowest maximum deflection.

16.4 Structural patterns

After the shell’s shape has been fixed, the next problem 

can be summarized as follows. What sort of network 

of curves could we use to add ribs or reinforcements, 

or to distribute many small openings over a shell?

Thus far, many surface discretization schemes used 

by designers are dependent on the effective param-

eterization of NURBS surfaces and other explicitly 

parameterized surfaces. In general, NURBS have 

skewed local coordinate systems; hence, isolines of 

such surfaces form skewed networks of curves that 

may introduce problems for fabrication (very narrow 

angles at connections with difficult joints).

16.5 Principal stress vector fields

It is better to start, in generating a network of curves, 

from the principal stress directions, which define 

orthogonal pairs of vectors at each point on the shell 

along which the shear stresses vanish. This means that 

all the intersections occur at 90°. This may facilitate 

the fabrication of joints between elements. However, 

as is the case with most vector fields, it is quite 

difficult to extract a consistent network of curves 

from them. This is further complicated because the 

principal stress directions (like the principal curvature 

directions on a surface) are not proper vector fields, 

but the eigenvectors of tensor fields; thus, these eigen-

vectors come in pairs of pure direction (no sense), and 

if they were to be treated as ordinary vector fields, 

one would obtain unexpected results such as abrupt 

flipping of sense and 90° rotations from one point to 

the next.

Another obvious candidate field is the principal 

curvature directions, which would be ideal for the 

discretization of a shell into panels with minimal twist. 

Moreover, it would be possible to control local field 

Figure 16.7 FE results from linear combination of 
eigenmodes and given support heights for a square, 
triangular, circular and arbitrary plan
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directionality through handles that can be manipu-

lated by the user in order to defi ne the local scaling 

and direction. Th e algorithm could mark out regions 

that are not structurally critical and in which such 

design considerations may override the structural 

pattern.

Figure 16.8 shows diff erent patterns derived from 

the same shell shape. Th e fi rst two, principal curva-

tures and gradient s, are geometric, while the second 

two, principle moments and principal stresses, are 

mechanical, and taken from the FE analysis.

Th e fi rst step in constructing some geometry from 

the stress vector fi eld is the interactive selection of 

principal stress lines on the given shell, followed by 

their post-rationalization to obtain, for example, a 

proper network of ribs. Th is is an intuitive approach 

that gives the designer maximum control. From 

the viewpoint of implementation, it will look like 

a standard integral curve problem (using either the 

Euler or Runge-Kutta methods), but one where 

special care is required to handle the possible 90° or 

180° fl ipping in the fi eld, always following the best 

candidate direction (this does not work very well near 

singularities, but one can detect these regions and 

terminate the integration).

16.5.1 Reparameterization

A rather more robust approach involves determining 

how to reparameterize a surface so that its new 

coordinate curves would run along these vectors (at 

least locally), and then, simply mapping a grid on 

the surface using the new map. Th is is exactly what 

the periodic global reparameterization algorithm does. 

(b)

(a)

(c) (d) (e)

Figure 16.8 (a) Asymmetric shell with patterns derived from (b) principal curvatures, (c) gradients, (d) principle moments and 
(e) principal stresses
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Using this algorithm, one obtains a set of texture 

coordinates per vertex per facet (and not just per 

vertex), which enables the mapping of any pattern on 

the surface. Th ere is only one limitation for the pattern, 

that is, it has to be invariant under 90° rotations; 

otherwise, inconsistencies may appear along edges 

with fl ipped fi rst and second principal directions on 

either side.

Th is method requires the principal stresses defi ned 

on the nodes rather than on the shell elements; thus, 

one can try to either extract stresses at nodes from 

one’s analysis module or run the reparameterization 

on the (centroidal) dual graph of the grid, where the 

centres of the quadrilaterals (quads) become nodes.

An advantage of this method is the decoupling of 

pattern scaling (a scalar fi eld) and pattern alignment 

(orthogonal pair of vector fi elds). Th is fl exibility makes 

it possible to determine the relative scale of the output 

pattern by inversely scaling the input vector fi elds. Th e 

scalar fi eld that determines the scaling of the pattern 

can be determined by the designer, according to the 

project requirements or design objectives. In addition, 

the description of a pattern as a ve ctor and a scaling 

fi eld allows for the integration of diff erent concerns in 

the same pattern through vector fi eld blending.

After the execution of the algorithm is complete, 

we can extract the isolines of the new parameteri-

zation by simply mapping a quad pattern on the 

surface using the new  ( u,v )  coordinates.

16.5.2 Singularities

Another interesting property of such fi eld-induced 

networks of curves from the viewpoint of design 

and fabrication is the existence of singularities in 

these fi elds. Th ree types of singularities appear in 

such fi elds, and they would require special care 

by the designer. Singularities are a mathematical 

and computational nuisance. However, they provide 

fundamental information about the fi eld that 

generates them (they give it a structure). Hence, the 

interpretation of singularities in the detail design 

and fabrication stage is a design opportunity rather 

than a nuisance. Th ey appear as focal points and 

lines that hold the entire structure together, visually 

and often literally, like a pole in a woven basket or 

an upholstery button.

16.6 Implementation

For this particular problem, the data structure is a grid 

of square cells. Th e information stored at the nodes is 

location (initial x, y, z, and possibly, displaced z), all 

the usual structural analysis inputs (material property, 

boundary conditions, loads), a pair of vector fi elds 

that will be used in the latter pattern generation phase, 

and whether the node is a part of the shell (within 

the boundaries). Th e grid cells are linked to shell 

FE defi nitions, from which we can extract FE linear 

elastic analysis results (in particular, the principal 

stress directions).

Regardless of the geometry of the shell itself, we are 

going to work in an orthogonal domain big enough to 

hold the shell in plan. Th e use of a grid that exten ds 

to the boundary box of the shell may seem compu-

tationally wasteful at present; however, its usefulness 

will become apparent later. Th e m × n discrete square 

grid is a raster representation of our system, and the 

number of cells in the system is k = m  n. Grid G has 

cells  G 
ij
 , where i = 1,...,m and j = 1,...,n.

Figure 16.9 shows the triangular shell, the grid 

extending beyond the geometry of the shell, the 

(a) (b) (c) (d)

Figure 16.9 (a) Triangular shell resulting from the (b) initial plan shape and extended grid mapping, (c) the grid with values for 
the Laplacian and (d) the FE mesh
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subgrid used to compute the Laplacian and the FE 

mesh.

The following k × k matrices need to be calculated: 

the discrete Laplacian matrix L, the potential matrix 

(boundaries and scaling) P, and the combined matrix 

H = L + P. Matrices L and H are symmetric and P is 

also a diagonal matrix. In order to conserve memory, 

P is stored as a vector of length k.

16.6.1 Discrete Laplacian

For simplicity, we construct the discrete Laplacian  of 

a regular rectangular grid containing the shell. The 

boundaries of the shell will be enforced (if needed) 

by adding a scalar field P representing the shell as a 

potential well which will be added to the Laplacian 

(low values inside the shell and high values outside). 

Here, we have a grid of constant cell size so the 

discrete Laplacian  looks like the graph Laplacian L 

of the grid. We could construct the same matrix L for 

irregular grids (meshes) of arbitrary graph topology 

by using the discrete Laplace–Beltrami operator. The 

computational overhead is not significant and the 

slowest step (calculation of eigenfunctions) depends 

only on the number of nodes, not on the complexity 

of the graph.

The discrete Laplacian L is easy to compute as we 

are working on a grid graph (the shell boundary will 

be a potential function so it will not affect the form 

of the L matrix). Basically, we need to set the diagonal 

elements  L 
ii
  equal to the degree of that cell, that is, 

the number of connected neighbours, and for each 

row, set the indices corresponding to the neighbours 

of the cell  L 
ij
  =  L 

ji
  to -1. Each cell  L 

ij
  may have four, 

three or two neighbours depending on whether it is 

an interior, edge or corner cell. In other words, the 

entries of L,

 ⎧deg( n 
i
 ) if i = j

 L 
ij
  = ⎨− 1 if i ≠ j and  n 

i
  is adjacent to  v 

j
 

 ⎩0 otherwise

where deg( n 
i
 ) is the degree of node i.

The graph Laplacian can also easily be constructed 

from the branch-node C, discussed in Section 6.4.1,

 L =  C T C, (16.1)

where, for a 3×3 grid,

 L = 

⎡ 2 −1 . −1 . . . . . ⎤
⎢ −1 3 −1 . −1 . . . . ⎥
⎢ . −1 2 . . −1 . . . ⎥
⎢ −1 . . 3 −1 . −1 . . ⎥
⎢ . −1 . −1 4 −1 . −1 . ⎥
⎢ . . −1 . −1 3 . . −1 ⎥
⎢ . . . −1 . . 2 −1 . ⎥
⎢ . . . . −1 . −1 3 −1 ⎥
⎣ . . . . . −1 . −1 2 ⎦

. (16.2)

In order to calculate P, note that each cell in the m × n 

grid G corresponds to one diagonal element in P 

(since the diagonal of P has k = m × n entries). For each 

element  P 
ii
  along the diagonal, where i = 1,…,k, set it 

to 0.0 if the corresponding cell’s  G 
ij
  centre falls within 

the boundary of the shell or 1.0 if it is not. Here, any 

value p between 0.0 and 1.0 can actually be used if the 

eigenfunctions are to resemble waves with variable 

frequencies (denser waves near cells with higher  P 
ii
  

values). Stored as a vector, in this case,

 p = [0  0  0  0  p  0  0  0  0]T. (16.3)

The combined matrix H is simply the sum of L and P. 

We now want to calculate the eigenvectors of H. There 

are k eigenvectors for H but for our purpose we only 

need the first few. The reason for this is that the eigen-

vectors represent displacement functions that look like 

standing waves within the boundary of the shell. If 

we want to limit the shapes to smooth functions with 

limited number of oscillations, then we can assume 

that these displacements will be some linear combi-

nation of the first few eigenvectors. There are several 

algorithms, such as the Arnoldi algorithm used here, 

for calculating the eigenvectors v of a matrix. We store 

the o number of eigenvectors v with k values in a k × o 

matrix V. The k values represent displacement values 

for the k cells in the original grid. The o eigenvectors 

v are now used for the basis displacement functions  f 
i
 , 

with i = 1,…,o. The optimization algorithm searches for 

the o coefficients  a 
i
  that are used to linearly combine 

them to describe the shape of the shell.

Figure 16.3 shows the eigenfunctions for a circular 

domain. In Figure 16.4 a linear gradient has been 

applied by changing the values of P from 1.0 to 
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0.0 along the grid. Figure 16.5 shows how, for the 

triangular domain, the first ten eigenvectors can be 

mapped back on the shell. The boundary can be 

limited to a subregion of the shell (Fig. 16.5, left) 

below by modifying P so as only the elements of P 

corresponding to cells within the subregion are set 

to 0.0.

16.6.2 Finite element model

For the FE model we take the centres of the cells that 

fall within the input shell boundary and form a grid 

of shell elements connecting them (Fig. 16.9d). The x- 

and y-plane coordinates of each node in the FE model 

are known. The z-coordinate will be the result of adding 

a weighted sum of the eigenvectors to the original 

elevation of its point projected on the input shell.

For the optimization phase we can use either a 

simulated annealing or genetic algorithm or any other 

stochastic optimization method. The optimization 

variables are the coefficients of the eigenvectors in the 

weighted sum that determines the shape deformation. 

As for the objective function, here for the sake of 

simplicity we just use the maximum deflection of the 

shell.

The FE model, however, has fewer nodes than 

there were cells in the original grid and we need to 

know how to map the new FE nodes to the original 

cells. The objective function for a single step in the 

optimization loop would be: given a test solution of o 

coefficients a, eigenvectors V and the k z-coordinates 

of the grid points  z 
G
  corresponding to the initial grid 

projected on the input shell. First, build the FE mesh, 

and then calculate the coordinates z, where each node 

in the FE mesh corresponds to the cell from the 

original grid, so z =  z 
G
  + Va.

After applying boundary conditions and loads, 

structural analysis is performed, which returns the 

maximum deflection as the output of the objective 

function.

16.7  Tracing integral curves of 
eigenvector fields

Given an FE mesh with shell elements Q and 

assuming that we know the principal stress vectors  

s 
1
  at the centre of each shell element  p 

j
 , we want to 

trace a single curve along the first principal stress 

direction    ̂   
1, j

  starting from a point  P 
0
 .

1. Create an empty list of points P to hold the stress 

line points.

2. Find the element  Q 
j
  closest to  p 

0
  and set p =  p 

j
 .

3. Append p to P.

4. Set   
dir

  = 1 and  j 
0
  = j.

5. While the number of points in P < maximum 

number of steps:

a. If   
1, j

     
1,  j 

0
 
 > 0 then   

dir
  = −   

dir
 .

b. Find the edge  Q 
E
  of  Q 

j
  intersected by the ray 

r(t) = p +   
dir

    ̂   
1, j

 t and set p to the intersection 

point.

c. Append p to P.

Figure 16.10 Structural patterns derived from principal stress vectors in FE analysis
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d. If  Q 
j
  has a neighbour  Q 

h
  along the intersection 

edge  Q 
E
 :

i. then  j 
0
  = j, j = h and return to step 5a

ii. else break.

Step 5a is necessary because eigenvector fields tend to 

flip from point to point so we need to keep track of 

the last direction we moved along. Figure 16.10 shows 

the patterns derived for our four design plans, based 

on the optimized shapes and their FE results.

This simple algorithm gives a rough piecewise 

approximation of the stress lines. The stress lines are 

smoother if instead of moving directly to the edge of 

each shell element, little steps are made along inter-

polated stress directions from the corner nodes of each 

quads (similar to a simple Euler integration scheme, 

taking care to account for the occasional flipping 

of direction). For general meshes, interpolating the 

stress tensors and extracting the eigenvectors of the 

interpolated tensor is difficult as the stress tensor for 

each shell element is expressed in the local coordinate 

system of the element. However, because of the fact 

we are using an orthogonal grid and provided that 

our shell does not have very steep slopes, we can use 

simple bilinear interpolation to get an approximation 

of the interpolated stress tensor at each point.

Extracting stress lines requires some kind of seeding 

strategy for the initial points which can lead to 

inhomogeneous distributions of curves. The extracted 

pattern can be improved in several ways. Careful 

seeding of start points for stress lines can result in a 

more even distribution of curves. Alternatively one 

can use an algorithm such as periodic global reparam-

eterization in order to extract isoparametric curves 

that follow the stress lines.

16.8 Application to brief

The preliminary designs for the entrance to the 

rhinoceros habitat has yielded a wide range of possi-

bilities, due to both our freedom in choosing different 

footprints and the option to have high support points. 

Figure 16.11 shows the resulting gridshell for the 

square, triangular and circular shapes, all demonstrating 

open edges that flare up. Figure 16.12 illustrates that 

the same footprint can yield very different shapes 

Figure 16.11 Resulting structures from shape and pattern 
optimization for the square, circular and triangular plans

Figure 16.12 Two resulting structures for different heights 
of the boundary conditions, for the same arbitrary plan shape
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depending on the boundary conditions, as well as 

resulting in a different structural pattern.

16.9 Conclusion

Computer simulation methods have opened up new 

possibilities for design and research by introducing 

environments in which we can manipulate and observe. 

For instance, architects utilize three-dimensional 

modelling tools to simulate architectural geometries, 

and engineers use FE software to simulate structural 

behaviour. Simulation tools make certain aspects of 

architecture efficient, but they have brought new types 

of challenges into the field. One such challenge is the 

structuring of so-called complex geometries often 

described as surfaces or shells. These forms are often 

conceived in an environment where gravity, scale and 

material are absent but analysed in a model where 

geometries are frozen and static. As a result, there 

exists little understanding between the two disciplines 

in solving the design problem and arriving at a well-

negotiated form.

In fact, computer simulation involves the 

modelling of a reality of something, as an abstraction, 

in order to facilitate understanding towards a specific 

aspect of interest. Simulation is a manipulation of a 

model that enables us to perceive interactively, the 

relationship between parts, as well as its overall impli-

cations, all of which would be difficult to observe 

otherwise. Generally, architects and engineers look 

into different aspects of reality, thus the models they 

develop as well as manipulate hold different struc-

tures and controls.

In this chapter, we proposed a way of integrating 

aspects of both architecture and engineering models.

Key concepts and terms

The Laplacian is a differential operator  that features 

in many mathematical descriptions of physical 

processes, such as the heat and wave equation. It is 

defined as the divergence of the gradient of a function. 

Its eigenfunctions are associated, for example, with 

vibration modes on a membrane and other related 

phenomena.

The Laplace–Beltrami operator is a generalization of 

the Laplace operator for curved surfaces.

Discrete Laplacian or discrete Laplace operation is 

the discrete version of the Laplacian operator in the 

form of a matrix. In its simplest form it can be given 

by the graph Laplacian L which is related to the 

connectivity matrix of a graph.

Eigenvectors are, given an n × n matrix A, n-vectors 

v which satisfy the equation Av = lv where the eigen-

value l is a scalar. For example, if the matrix A is 

3 × 3 and describes some non-uniform local scaling of 

geometry, these vectors will point to the directions of 

the maximum and minimum stretch. What the above 

equation tells us is that these vectors correspond to 

special directions in space that the matrix A is applied 

to, their direction does not change. The eigenvectors of 

the stress tensor are the principal stress directions. The 

eigenvectors of the curvature tensor are the principal 

curvature directions and always form orthogonal 

pairs of vector. For example, around a cylinder the 

maximum eigenvector at a point will be tangent to the 

circle that passes through this point and the minimum 

eigenvector will be parallel to the line generator.

Eigenfunctions are basically the infinite dimensional 

equivalents of eigenvectors. If instead of a matrix 

one has a differential or integral operator K, then its 

eigenfunctions will be the functions f that satisfy the 

equation K(f)=lf for some scalar l. Grossly simpli-

fying for the sake of explaining, one can think of 

operators such as  as a matrix of infinite rows and 

columns. In the discrete case the rows and columns 

become finite.

Spectral methods are special methods used in 

numerical analysis that take advantage of the fact that 

certain problems are easier to solve in the frequency 

domain. There is interest in the application of these 

methods in computer graphics as they provide novel 

ways of thinking and manipulating geometry.

Exercises

Given the standard grid (Fig. 6.12), instead 

of using eigenfunctions, we first apply simpler 

displacement functions, from two superimposed 
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waves  a 
1
   cos(  f 

1
   x) +  a 

2
   cos(  f 

2
   y), where x and 

y are the coordinates of each mesh vertex,  a 
1
  and  

a 
2
  the amplitudes of the two waves and  f 

1
  and  f 

2
  

the frequencies. Select boundary conditions and 

loads. Apply an optimization algorithm (such as 

simulated annealing or GA) with  a 
1
 ,  a 

2
 ,  f 

1
  and  

f 
2
  as optimization parameters and the maximum 

deflection from FE as the objective function.

From previous exercises we know the branch-node 

matrix C. Compute the discrete Laplacian of the 

generated grid, the graph Laplacian L and extract 

the eigenvectors. Selecting one of them (they have 

the same number of components as the number of 

points in the original grid) and use it in order to 

displace each grid point along the z-axis.

Use a linear combination of the first few eigenfunc-

tions to create a composite displacement function. 

Run the same optimization using the coefficients 

of the linear combination as parameters.

Given an FE model of our optimized result, trace 

stress lines from the centres of all the quadri-

laterals and colour them according to the average 

stress along each path. If instead you have a very 

fine grid, selectively (either manually or compu-

tationally) remove stress lines that have very low 

mean stress value or are very close to other stress 

lines. After you finish with the strategic thinning of 

the stressline bundles, simplify the remaining ones 

and add ribs along their paths.

Further reading

‘Periodic global parameterization’, Ray et al. (2006). 

This paper presents an algorithm for the generation 

of quad meshes aligned to an input vector field. The 

same algorithm will allow us to map any pattern on 

a curved surface aligned to any input vector field.

Advanced Topics in Finite Element Analysis of 

Structures, Asghar Bhatti (2006). This book 

contains a typical technical treatment of finite 

element analysis with many examples of step-by-

step computation and example code.

‘Discrete Laplace–Beltrami operators for shape 

analysis and segmentation’, Reutera et al. (2009). 

This paper is a comprehensive overview of the 

current state of spectral methods on discrete 

surfaces. There is a good discussion of the pros and 

cons of the different discrete approximations to the 

Laplace–Beltrami operator for discrete manifolds. 

The Laplace–Beltrami operator lies at the heart 

of many interesting algorithms for the analysis, 

manipulation and representation of meshes.
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CHAPTER SEVENTEEN

Homogenization method
Distribution of material densities

LEARNING OBJECTIVES

Explain the interaction between the form gener-
ation of a shell and the support conditions.
Discuss the homogenization method as an 
optimization technique for the generation of 
both surfaces and surface topologies.
Apply the method to develop surface shapes 
for thin shells.
Use this method to develop a structurally 
efficient topology on a predetermined surface.

Shells are form-passive structures; they exhibit a direct 

interaction between form, loading, support conditions 

and structural behaviour, and resist forces through 

their form. While they can be very efficient in their 

structural performance, at the same time they can 

react very sensitively to loadings or support conditions 

that do not match their shape. Loads and support 

conditions are determining factors in the process of 

shape generation of shells.

Support conditions (point or linear) have a clear 

impact of the optimal form for a shell in terms of 

their global geometry and grid layout. We explore the 

influence of support conditions on the generation of 

shell geometries, using the homogenization technique. 

Our design exploration has two phases:

Figure 17.1 Point-supported Palazzetto dello Sport, Rome, 
1957–8, by Pier Luigi Nervi

1. Surface shape: for a given footprint and within a 

given design space (three dimensions) we carry 

out three-dimensional topology optimization for 

a series of support conditions to find efficient shell 

surface shapes.

2. Surface topology: within a given three-dimen-

sional surface (established in the previous phase), 

we carry out topology optimization to establish an 

optimal layout.

The brief

A private client wants to build a small, iconic equestrian 

arena. The proposed multi-purpose arena has a floor 
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plan of 900m2. We start our design exploration with 

basic structural studies of shell structures. We develop 

the footprint in response to the structural geometry 

studies, so there is no a priori compulsory floor layout. 

The final design resulting from the study presented 

here is shown in Figure 17.2. The support conditions 

and footprint are reminiscent of the Palazzetto dello 

Sport in Rome, by Pier Luigi Nervi (1891–1979), 

shown in Figure 17.1 and on page 210.

17.1 Objectives

In generating shell shapes, we aim to minimize mean 

compliance, or ‘flexibility’, which describes the energy 

of internal forces stored during the deformation of a 

structure. The studies carried out can be characterized 

as ‘compliance design’. Our design study will show that 

when developing structural geometries using methods 

of structural optimization, this approach produces 

shell-like structures. The minimization of compliance 

produces, in case their shape is developed correctly, 

very efficient shells with high stiffness. The model 

set-up and optimization formulation are as follows:

definition of the design space;

definition of the optimization objective or more 

specifically minimal compliance;

definition of the optimization constraints – the 

volumetric fraction of the design space allowed to 

be filled with material (since otherwise the optimi-

zation algorithm would simply fill up the whole 

design space).

The optimization method and geometry studies 

described in this chapter aim to:

analyse and evaluate the interaction of shell 

shape and its performance for a series of different 

boundary constraints;

quantitatively describe how shell geometries 

compare in terms of structural efficiency.

We carry out comparative studies by using the 

homogenization method as one method for topology 

optimization, while varying the support conditions. 

The shape development is carried out in two steps: 

the development of an overall surface shape of the 

structure within a given design space, and the devel-

opment of a layout on that, or any other given surface.

17.2 Methodology

This section describes the background of the hom- 

ogenization method for the structural optimization. 

We start from a well-defined optimization problem. A 

straightforward approach is the use of a parameterized 

geometry description in a CAD program that we use 

for shape and topology. Generally, one needs a large 

amount of computational time to solve real problems. 

As a result, fast pixel-based topology optimization 

methods, and more specifically, the homogenization 

method were developed to reduce this computational 

time.

17.2.1 Design space

The basic idea is the subdivision of the structure 

in many small domains (pixels). The optimization 

problem is to find an optimal structure, described 

by pixels, or voxels, each with, or without material (a 

discrete, binary, 0-1, problem). In standard approaches, 

Figure 17.2 Interior view of a point-supported roof based on the homogenization method
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one pixel is one finite element. After this optimi-

zation, we get a rough design proposal which we 

have to interpret for the generation of a real structure. 

The result gives information about the topology and 

about the shape. One of these pixel-based methods 

is the so-called homogenization method, which is a 

very common approach used in industry. The hom- 

ogenization method (Bendsøe and Sigmund, 2003) 

reformulates the binary problem into a continuum 

problem that optimizes the density of a porous 

material for every pixel. After the optimization, there 

are pixels with the density of ‘0’ (no material), pixels 

with the density of 1 (fully solid material) and pixels 

with the density between 0 and 1 (porous material). 

The pixels subject to optimization form the design 

space. The remainder of the problem space consists of 

either space with fully solid material, such as predeter-

mined enclosures, or space free of material, resulting 

from design restrictions, such as openings.

In many cases, the reduction of the calculation 

problem by setting up symmetry conditions is helpful, 

in order to reduce computational time. This can also 

be done by coupling of the design variables. This is 

necessary, if the goal is to obtain a symmetrical shell.

17.2.2 Problem definition

In the large range of possible objectives and constraints, 

the group of functions, which can be described by 

integrals over the whole structural domain, are the 

easiest possibility for handling in automatic optimi-

zation loops. Therefore, we formulate the sensitivities 

directly based on the results in the individual finite 

elements (design pixel). The problem with using local 

functions (e.g. the maximum value of local stresses) 

instead of domain integral-based functions is the 

possible jumping of the position of the maximum 

value in the structure from iteration to iteration, 

which makes the use of the calculated sensitivity 

information more complicated or unreliable. It is 

thus a good idea to reformulate the objectives and 

constraint functions as an integral over the whole 

structural domain  (Dems, 1991), in the form of 

the functional

 G =   [   1 __ ∫ 
 

   

 

      (     
v
 
 __   

0
    )  

n

 d ] 
  1 __ n  

 , (17.1)

where   
v
  is the local Von Mises stress value and   

0
  the 

allowed stress value. With n>1 the large local stress 

peaks get larger influences, so that satisfying allowable 

stress conditions can be ensured more easily.

The easiest formulation of objective and constraint 

functions is the use of the deformation energy; 

for example, using mean compliance. The mean 

compliance is described by the integral over the 

product of boundary stresses (respectively volume 

forces) and the corresponding displacements. We start 

from the principal of minimum total potential energy, 

defined as ∏ = U − W, where the internal energy

 U =  ∫        T C d  (17.2)

and the external energy, in terms of the boundary 

stresses and displacements, for a structure with given 

boundary stresses  t 
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  and boundary displacements  
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where C is the stiffness matrix,  the strains, v the 

displacements,  [ ]  the Cauchy stress tensor (normal 

and shear stresses), n the normals to the boundary and 

f the volume forces. These three terms are integrals 

over the restraint stress (Neumann) boundary   
N
 , the 

restraint deformation (Dirichlet) boundary   
D
  and 

the whole structural domain . In the case of linear 

elasticity, the mean compliance is the same as the 

deformation energy U.

17.2.3 Homogenization scheme

The initial model for the shell structure is set up as 

a volume of small micro-cells that take into account 

the quantification of the stress–strain behaviour. The 

porous material of these micro-cells is described by 

parts with, and parts without material (Fig. 17.3).

The first step is the homogenization of the material 

for a faster computation. The task is to calculate the 

coefficients of the stiffness matrix for a porous material. 

The coefficients of the stiffness matrix depend on the 

hole size  a 
1
 ,  a 

2
  and the hole orientation angle . The 

stiffness matrix, in the case of our orthotropic material,
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C = 

⎡ C 11   C 12   C 13 ⎤
⎢ C 21   C 22   C 23 ⎥
⎣ C 31   C 32   C 33 ⎦

= 

⎡ C  11   C 12  0⎤
⎢    C 22  0⎥
⎣sym    C  33 ⎦

, (17.4)

which for a solid, isotropic material,

  C solid  =   E
 ____ 

1 −  v 2 
  

⎡1 v   0 ⎤
⎢v 1   0 ⎥
⎣0 0   1 − v

 
___ 

2
  ⎦

. (17.5)

The construction of this matrix can be done numeri-

cally by using a simple finite element model of a 

micro-cell (Fig. 17.4). In this study, the finite element 

model has a size of 10mm. The finite element side 

length is 0.2mm. The Poisson’s ratio  of the solid 

part is 0.3. Figure 17.4 shows the mechanical models 

for the calculation of the coefficients of the stiffness 

matrix depending on the porosity   
M

  = 1 −  a 
1
  a 

2
  

(Fig. 17.3). The coefficients of the stiffness matrix  C 11 ,  

C 12  and  C 33  are calculated by several porosities (range 

of porosity from 0 to 1). This is the basic for fitting 

polynomials for a close analytical description of the 

porosity influence.

The mass is a linear function of the porosity   
M

  = 1 −  

a 
1
  a 

2
 . The combination of the nonlinear stiffness 

functions and the linear mass function helps to get 

values 0 for no material and 1 for full material. In the 

optimization iteration step, design variables which are 

nearby 0 are motivated to run to 0, because the mass 

reduces with only a moderate reduction of stiffness. 

Design variables which are nearby 1 can increase the 

stiffness fundamentally with a moderate increase in 

the mass. Considering the porous material, the origi-

nally discrete optimization problem is then solvable 

using an optimization algorithm that operates in the 

continuum.

It is also possible to work with more simple 

approaches, where

 C =  C solid    
M

  3
   . (17.6)

This third-order polynomial is similar to the 

polynomial generated by the homogenization method. 
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Figure 17.4 Stiffness calculation of a micro-cell 
depending on the porosity for homogenization of the porous 
material
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Figure 17.3 Defined loads and boundary conditions of the shell, and rectangular holes in a quadratic micro-cell
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An advantage of the homogenization method is 

the possibility to physically interpret the nonlinear 

stiffness-density behaviour.

17.2.4 Sensitivity analysis

A fast calculation of the sensitivities for each element 

concerning the size ( a 
1
 , a 

2
 ) and the orientation  

requires analytical equations. The classical approach 

is the minimization of the mean compliance (defor-

mation energy U ) considering a mass constraint. 

Therefore, the sensitivities concerning the hole sizes 

are given in analytical terms from the volume, or area, 

of the finite element  and the partial derivatives 

∂/∂ a 
K
  of C with k = 1,2. For each finite element E, 

with area   E ,
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The sensitivities concerning the orientation of the 

rectangular pores in one finite element can be deter-

mined as follows (Pedersen, 1989):

  ∂U
 ___ 

∂
= −   1 __ 

2
  (  

I
  −   

II
  )  sin 2 (  

I
  +   

II
  )       

( C  11  −  C  22 ) + (  
I
  −   

II
 )

        cos 2 ( C  11  +  C  22  − 2 C  12  − 4 C  33 ) )  ] , (17.8)

with the principal strains   
I
  and   

II
 . The angle  denotes 

the difference between the rectangular orientation    E  

and the orientation of the first principal strain. The 

shown scheme for the analytical sensitivities is valid for 

the membrane behaviour of three-dimensional shell 

structures. If analytical sensitivities of the bending 

behaviour are important, we can use equations (17.7) 

and (17.8) layer-wise. Alternatively, the calculation of 

the coefficients of the stiffness matrix depend on the 

porosity of a micro-cell such as in Figure 17.4.

17.2.5 Practical scheme

The overall procedure of the homogenization method 

is shown in Figure 17.5.

After identifying the available design space, and 

setting up a finite element model, the design variables 

are defined. Typically, for each finite element, each 

pixel, a property that describes the local density, or 

porosity, of the material is the design variable. The 

variation of the density of all pixels is done by some 

optimization or optimality criteria algorithm.

The optimization is influenced by three process 

parameters: the volume fraction, the penalty power 

and a filter radius. The volume fraction defines the 

amount of structural volume permitted to be imple-

mented into the design space as a fractional value. 

The value must be between 1 (full material) and 0 (no 

Figure 17.5 Scheme of the optimization process

No

START

Set-up of structural domain,
boundary conditions, load cases

Start with homogeneous
material distribution

Structural analysis and
evaluation of objective function

Sensitivity analysis and
filtering sensitivities

Variation of the densities of pixels
according to optimality criteria

Plot relative densities of
all pixels in design space

END

Define optimization parameters:
volume fraction, penalty power,

filter radius

Optimal topology
reached?

Yes
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material). Values between 0.3 and 0.6 generally lead 

to feasible optimization results. If the value is too 

high, the result is very solid; if the value is too low, the 

optimization does not produce continuous structures. 

The penalty power defines the penalty value for the 

convergence of relative density. The value has to be 

larger than 1 in equation (17.6).

The filter radius defines a mesh-independent filter 

which prevents checquerboard, that is, disconnected, 

patterns (0  no filtering, ≥ 0  declaration in 

‘number of elements’) (see Section 17.2).

The structure resulting from the optimization 

algorithm is a design proposal, which needs to be 

interpreted to generate a real structure. For example, 

we have to take into account that the homogenization 

method cannot consider stability problems such as 

buckling. The model is also heavily discretized, and 

needs to be turned into a real structure in a CAD 

system.

One could follow the development of the design 

proposal in each iteration, while at the same time 

following the value of the mean compliance of the 

actual design. This value decreases as the optimi-

zation proceeds, which indicates that the optimization 

algorithm redistributes the material within the design 

space in a more efficient way in each step, therefore 

reducing the compliance of the structure with the 

amount of material remaining the same (within the 

predefined constraints).

17.3 Two-dimensional example

As an example, a simple structural model was generated 

for a comparative optimization run. The objective of 

the optimization algorithm is the minimization of 

the mean compliance. The square design space is 

subject to a uniformly distributed gravity load. In 

both cases, the constraint is a volume fraction of 0.4 

(i.e. 40% of the design space allowed to be filled with 

material). The structure is supported by one fixed and 

one sliding support (Fig. 17.6a) or two fixed supports 

(Fig. 17.6b). In this simple example, the definition of 

the material properties, the Young’s modulus E, the 

Poisson’s ratio  and the element stiffness matrix are 

fixed. In this case, once the decrement between two 

compliance values is lower than 0.01, the algorithm 

stops.

Figure 17.6 Square design domain with distributed loading 
at the top for (a) fixed supports, (b) simply supported, and 
optimized result for an arch bridge (c) with and (d) without tie 
member

(a)

(c)

(b)

(d)

Figure 17.6 shows the result of the optimization 

process, which converges after seventeen iterations 

reaching a compliance value of 67kNm in case (a), and 

after nineteen iterations reaches a compliance value of 

82kNm in case (b).

The design proposals are very similar, except for 

a tie member being established in case (b), which is 

obviously necessary due to the sliding support and 

the horizontal force component of the arch. The 

compliance values are directly related to this: the 

structure with a sliding support will undergo higher 

deformations, with a larger force ratio remaining 

inside the structure (instead of being transferred to 

the supports), resulting in a higher compliance value.

The next two sections describe the homogeni-

zation method applied to three-dimensional volumes 

and curved two-dimensional surfaces as the design 

space. These can be regarded as simple extensions of 

the two-dimensional example given here: either the  

( x, y )  grid is extruded to the third dimension z, or it 

is mapped to the surface  ( u,v ) -coordinates (Fig. 17.7).

17.4  Generation of continuous 
shells

The design development for the brief now leads us to a 

three-dimensional challenge: for a given footprint and 
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a structural shape with low compliance (or high 

rigidity) with supports along the perimeter of the 

system. In other words, the optimization objective 

is the minimization of compliance. We define the 

design constraint, the volume fraction, as 40%. In 

other words, 40% of the volume is allowed to be filled 

with material. The choice of the volume fraction 

value is up to the designer and should be subject 

to precedent comparative studies. The resulting 

material distribution is then used to extract a surface 

structure for further design development. This is 

done by selecting an ‘isosurface plot’, a surface of 

equal material density, from the material distribution 

of the volume. Before carrying out a series of studies 

where we change the location of the supports, we 

first decide on the density value for the extracted 

isosurfaces. This is done on the basis of a single result 

for given boundary conditions.

17.4.1 Extracting surfaces

Figure 17.8 shows the structural model for the 

optimization and the design proposal produced by 

extrude map

x

x
y

z v
u

(a) (b)

isosurface 
as input

y

Figure 17.7 The two-dimensional  ( x,y )  grid (a) extruded 
to a three-dimensional domain  ( x,y,z ) , or (b) mapped to a 
surface  ( u,v ) 

a height restriction, what are the boundary conditions, 

shape and topology for a curved surface structure 

enclosing our equestrian arena?

The material distribution within a given volume 

is our first design step. First, we focus our attention 

on a square footprint, typical of equestrian arenas. 

Within a given cuboid, with uniformly distributed 

gravity loading on the top face, we want to generate 

(a) (b)

(c) (d)

element density

1.000.670.01 0.34

Figure 17.8 (a) Distribution of density values between 0 and 1 as contour plot; (b) isosurface plot of areas of equal density; 
(c,d) plot of one chosen density value of 0.4 and 0.7 respectively
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the optimization algorithm. The optimization result 

(‘design proposal’) shows the distribution of material 

(40% of the design space) within the cuboid, with 

areas of low density (0, dark blue) to high density 

(1, red). The areas with high density are allocated 

at the top surface of the volume (where the loading 

is applied) and the four bottom corners (where the 

supports are).

At this stage, we evaluate the material distribution 

for different density values, by plotting isosurfaces, 

and choose one value for further design development, 

which is a decision up to the designer and needs to be 

carefully considered: areas with densities around 0.8 

are the ones where material is most efficiently used, 

however, this may not lead to a continuous structure; 

areas with low densities of around 0.2 may lead to very 

solid structures. Figure 17.8c shows an isosurface plot 

for an isolated value of approximately 0.45, and Figure 

17.8d for 0.85. Both plots show the distinctive feature 

of a cross-vault-like, doubly curved structure.

The choice of a density value for the further devel-

opment of the design proposal is an essential step 

after performing the optimization algorithm. In our 

case, it is feasible to eliminate intermediate values 

that are necessary to transmit the loading from the 

top surface of the cuboid onto the optimized structure. 

For the design study with varying support conditions, 

the density value of 0.45 is chosen since it delivers a 

descriptive image of the optimization result for the 

following comparative study.

The optimization algorithm converges after 

fourteen iterations until the stopping criterion (the 

decrement being lower than 0.01) is fulfilled, with the 

graph of the objective function shown in Figure 17.9. 

The optimum is reached quickly after four iterations, 

while the following iterations hardly feature any 

changes in the compliance value. This phenomenon 

occurs as the algorithm redistributes the intermediate 

values (the ‘porous’ material) within the structure, 

once it has approached its optimum topology. This 

redistribution does not influence the compliance value 

but results in a clearer readability of the design 

proposal. When comparing the shape of the design 

proposal after four iterations to the final result, they 

are very similar with small deviations of the areas with 

density close to 1.

17.4.2 Comparing support conditions

The following study uses the design domain and loading 

as shown in Figure 17.9. We use the same optimi-

zation objective function (minimum compliance) and 

design constraint (volume fraction of 40% of the 

design space).

The support conditions of the structural model 

is systematically varied. Through this parametric 

study we would like to understand the interaction 

between the support conditions and the structural 

shape produced by the optimization algorithm and its 

associated compliance value.

Replacing the point supports in the corners (model 

1) by line supports along two of the edges (model 

2), the optimization algorithm produces the single 

curved vault shown in Figure 17.10. This shape with 

symmetrical line supports produces a symmetrical 

design proposal; except for slightly doubly curved 

areas near the free edges.

Comparing the graphs setting out compliance 

(objective function) versus number of iterations, we 

can conclude that:
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Figure 17.9 Compliance during the iterations and design proposals produced by iteration 4 and iteration 14
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As the algorithm starts, the structure with line 

supports along two sides of the volume (model 2) 

has a very low compliance value compared to the 

structure with point supports (model 1). This obser-

vation makes sense: in a continuously supported 

structure, the loads are transferred directly to the 

supports with low compliance, low deformations, 

high rigidity.

The compliance values of both structural models 

converge quickly to their optimum, followed by 

many iterations with no significant change of 

compliance value resulting from the redistri-

bution of material within the previously found 

optimum, which is an effect described in Section 

17.4.

The final compliance values of the two struc-

tural models, once the optimization has converged, 

still show a difference in value. However, the 

ratio between the two values has been reduced 

to about 1/20 compared to the difference in the 

beginning of the optimization. The structural 

model with point supports in the edges ‘catches 

up’ in compliance by inducing increased double 

curvature and thus higher geometric stiffness. 

Nevertheless, its compliance is higher, that is, its 

rigidity is lower compared to the structure with 

continuous supports. Their structural performance 

can be directly compared through their objective 

graphs.

Continuing the scheme of parametric structural 

models with constant optimization objectives, we 

establish a systematic variation of the support 

conditions in order to compare the resulting design 

proposals and their associated compliance values. 

Figure 17.11 shows the diagrams for the variation 

of the support conditions, ranging from continuous 

line supports along all bottom edges of the design 

space to local line supports at two sides. We exclude 

single point supported structures from this study since 

the point supports induced singularities in the FE 

calculation and produced results difficult to compare. 

The support conditions and the optimization result, 

including both the geometry of the design proposal 

and their associated final compliance value, are shown 

in Figure 17.11.

Our study shows how, using the homogeni-

zation method, the support conditions of a structure 

influences the generated shape and the structural 

performance of a structure in general. With more 

supports, the loads are transferred more directly, related 

to lower compliance, higher rigidity, or higher struc-

tural performance. Structures with a larger number 

of supports result in lower compliance values reached, 

shown most clearly in the comparison of model 3 

(circumferential supports) and model 6 (small local 

supports) in Figure 17.11. Furthermore, single or 

double symmetry of the support conditions leads 

to single or double symmetry in the geometry of 
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Figure 17.10 Compliance during the iterations and resulting design proposals for point supports in the corners (model 1) and 
with linear supports (model 2)

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


220   IRMGARD LOCHNER-ALDINGER AND AXEL SCHUMACHER

the design proposal. The benefits of optimization 

studies lie in the numerical and visual comparability 

of geometries, evaluating both the structural perfor-

mance and aspects of shape and aesthetical qualities.

17.5  Generation of surface 
topologies

As a second design step, we carry out studies on the 

material distribution within a given curved surface. 

The resulting forms are non-continuous, gridshell-like 

surface structures. The previous optimization study 

produced a surface within a given volume, which 

can serve as input for this second step. The topology 

optimization can also be carried out for a given 

(curved) surface. This tool leads us to study for geome-

tries of gridshells. In this study, the influence of the 

overall shape of the given design space (e.g. single or 

double curvature) and of the support conditions are 

of interest.

17.5.1 Conical vault

We keep the same problem formulation: minimization 

of compliance, with a given volume fraction (0.4) of 

the design space. We start with a curved design space 

on trapezoidal plan, a single curved vault, mathemati-

cally described as a cone section.

Linear supports along the edges produce the design 

proposal in Figure 17.12a, which shows the flow of 

forces to its base. Replacing the linear supports by 

point supports at each edge produces an arch-like 

structure which transfers its loads to the corners (Fig. 

17.12b).

The graphs of the objective function show, similarly 

to the studies carried out with the volume model, 

that the model with point supports undergoes higher 

deformations. The optimization takes off with a higher 

value, and the value reached after convergence is also 

higher than the compliance value of the model with 

linear supports (Fig. 17.12).

The optimization graphs show the so-called 

‘minimum member size control’. Since the optimi-

zation algorithm needs intermediate density values 

(between 0 and 1) to ensure convergence, it happens 

that the ‘design proposal’ produced is not ‘discrete’. 

This reveals the existence of many intermediate values 

of densities between 0.3 and 0.7, making it difficult to 

interpret the design proposal. The ‘minimum member 

size control’ induces a ‘penalty function’, redistributing 
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Figure 17.11 Diagrams illustrating the cuboidal design space and structural systems of models 1–6: bold lines indicate the 
supports of the structure
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intermediate densities towards lower and higher 

values respectively. Th is step results in a jump in 

compliance, since the concentration of material on 

the one hand and the creation of voids on the other 

hand produces a structure with less rigidity. However, 

after the jump in compliance value, the optimization 

algorithm then approaches a  minimum below the 

value reached before.

17.5.2 Spherical dome

We now expand the complexity of the initial design 

space surface to a doubly curved surface. One-quarter 

of a partial sphere is modelled using symmetry 

boundary conditions along the inversion lines. Th e 

support conditions are varied as before, modelling 

numerous point supports along the perimeter or 

single point supports respectively, as shown in Figure 

17.13.

Th ese topology optimization studies show how 

the layout is adjusted to the shell support conditions, 

related to the example shown in Figure 17.1.

17.5.3 Practical development of the design

Th e design proposal generated by the optimization 

algorithm does not yet produce a structure, but leaves 

us with a geometry that needs to be interpreted and 

translated into a constructable shell. Th is interpre-

tation can take construction constraints into account, 

such as repetitive geometries, simplifi cation of curva-

tures and others. Th e design proposal suggests where 

the material is most effi  ciently used within a structure. 

Using the example of a doubly curved gridshell with 

frequent supports, we develop the geometry of a 

topologically optimized gridshell in the following 

steps.

In the fi rst step, we choose a density value of the 

design proposal, between 0 and 1. Th is choice is up to 

the designer and is usually determined by the need for 

a feasible continuous structure (Fig. 17.14).

A useful procedure is to export this geometry and 

to draught the fi nal layout of the structure, while the 

design proposal serves as a reference point for the 

three-dimensional geometry. In this case, we consider 

repetitive patterns based on radial symmetry.

Our fi nal form appears  very ornamental, in some 

aspects organic (Fig. 17.15). Some aspects of the 

shape, such as void outlines with bends around 

mid-height or sharp kinks near the top of the 

shell, may lead to discussions and many details 

would certainly have to undergo further steps in 

optimization. However, as an idea of an optimized 

structure, it does show a certain logic, and above 
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Figure 17.12 The conical design space and optimization result (a) with line supports and (b) with point supports
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all, optimization studies like this support structural 

understanding.

Th e geometry of the gridshell resembles the 

shape of diatoms (see Fig. 17.16), a major group of 

microscopic algae, docu mented by Ernst Haeckel 

(1834–1919) in the late nineteenth century (Haeckel, 

1904). Nature shows us optimized geometries, 

determined by the necessity to develop lightweight 

structures. Th e diatom skeleton is the result of an 

optimization procedure running over millions of years, 

and is still being optimized due to the continuing 

struggle between crabs and diatoms, with the crabs 

improving their pincers and the diatoms reinforcing 

their skeleton subsequently. Both of them require 

principles of lightweight structures since they need to 

carry their pincers and protective shield respectively. 

Natural structures are therefore good ‘role models’ in 

the design of effi  cient structures.

17.6 Conclusion

Using mathematical tools for structural topology and 

shape optimization can be a useful tool for fi nding 

fi rst design concepts. But we need to be careful: a 

element density

1.000.660.02 0.34

(a )

element density

1.000.680.02 0.35

(b)

Figure 17.13 Topology optimization of a circular shell structure with (a) highly 
discrete to (b) very dense point supports

element density

1.000.660.02 0.34

Figure 17.14 Choosing a 
density value for the further 
development of the design

Figure 17.15 Geometry designed by interpretation of the 
design proposal

Figure 17.16 A resemblance between diatoms (Haeckel, 1904) and our design proposal
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wrong definition of the optimization problem leads 

to wrong optimization results. It is not in every case 

so obvious as it is in the examples shown here. It is a 

necessity to discuss and interpret the results to find 

good ideas for their technical realization.

Structural optimization tools can be a useful 

support in the design of structural geometries. It does 

not, however, replace structural understanding. It is 

the responsibility of the designer to set up the optimi-

zation properly and to interpret results carefully.

Key concepts and terms

The homogenization method is a form of topology 

optimization. This approach distributes material 

within a given design space by defining a porous 

material and optimizing the density of that material 

within this space.

A pixel or voxel is a unit of subdivision of the two- or 

three-dimensional design space respectively, which 

is correlated to the material distribution during the 

optimization process. After the optimization, the 

design proposal produces pixels without material 

(density 0), full with material (density 1) and inter-

mediate values between 0 and 1 (‘porous material’ 

needed by the optimization algorithm.

The volume fraction is the ratio of the design space 

allowed to be filled with material by the optimization 

algorithm, ranging between 0 and 1 (corresponding 

0% and 100%).

Exercises

The Palazetto dello Sport (1958), designed and 

built by Pier Luigi Nervi for the 1960s Rome 

Olympic Games, has been lauded for its intricate 

ribbing pattern. Can you relate this pattern to the 

supports of the shell?

Compare the pattern of the Palazetto dello Sport 

with the one found in this chapter for similar 

support conditions. What do you observe? In what 

ways is it optimized? What are the benefits of 

Nervi’s chosen pattern? How could the optimized 

pattern have informed Nervi’s design?

Construct a design space of 10m × 10m × 10m. 

Use the homogenization method to develop the 

shape for a shell with four corner supports and one 

central support.

Design a NURBS surface with a 10m × 10m 

footprint. Apply the homogenization method to 

develop an efficient gridshell topology on this 

surface. Solving the problem is similar to the 

simpler two-dimensional problem, considering 

that the surface’s  ( u,v )  coordinates can be mapped 

to a plane  ( x, y )  grid.

Further reading

Topology Optimization: Theory, Methods and 

Applications, Bendsøe and Sigmund (2003). This 

book is an overview of several methods of topology 

optimization. Some of the explained methods are 

still in use today and are extended in interesting ways.

Optimierung mechanischer Strukturen, Schumacher 

(2013). This publication gives an introduction in 

algorithms and strategies for solving structural 

optimization problems.

‘First- and second-order shape sensitivity 

analysis of structures’, Dems (1991). This publi-

cation describes the possibilities for simplifying 

optimization functions in order to find analytical 

sensitivities and robust optimization loops.

Kunstformen der Natur – Kunstformen aus dem Meer, 

Haeckel (1904). This book is a documentation of 

Haeckel’s systematic catalogues of shapes in nature, 

with a differentiation between natural shapes in 

general, and the specification on creatures in the sea. 

Haeckel’s explicit illustrations serve as a continued 

inspiration for different professions. The 2012 

edition combines two of Haeckel’s major works.

‘On optimal orientation of orthotropic materials’, 

Pederson (1989). This journal paper deals with 

the efficient orientation of anisotropic material 

with respect to the structural strain and describes 

a method depending on one non-dimensional 

material parameter and the two principal strains.
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CHAPTER EIGHTEEN

Computational morphogenesis
Design of freeform surfaces

LEARNING OBJECTIVES

Discuss the conditions in which structural 
optimization can become a method of form 
exploration.
Construct a parametric model, search space 
and structural fitness function for shape 
optimization.
Generate shell shapes within a search space 
by means of a genetic algorithm.

Since the introduction of digital technologies, compu-

tational design and optimization has been gradually 

replacing practice based on physical models. Even if 

born as a set of mere solution strategies, architectural 

and structural design optimization seems also to be 

effective in supporting conceptual design. This aspect is 

highlighted through two design exercises of computa-

tional morphogenesis using Genetic Algorithm (GA). 

Two key aspects emerge from such processes: the 

possibility of freely formulating objective functions 

apart from structural performances, and the oppor-

tunity for designers to actively interact throughout the 

computational process.

Generalizing the concept of optimization, it is 

not just a matter of finding structural geometry. It 

is suitable to deal with every architectural problem 

in which a specific performance can be formulated 

numerically, that is, with an objective or fitness 

function to minimize. Technical issues such as light 

shading, acoustics of concert halls and construction 

problems of gridshells are just a few of the several 

performance criteria to which optimization can be 

applied. Optimization focuses on iterative improve-

ments of candidate forms. In this chapter we show 

how the designer can follow and interact throughout 

the optimization process. In architectural design, such 

a characteristic can be more important than reaching 

an actual optimum. The issues involved are not just 

structural in nature, but in fact are more complex and 

require an architect’s experience and creative intent. 

Optimization algorithms can be used in a more 

exploratory manner whether an element of interaction 

with designers is introduced or not. The computational 

power and speed of the process are used to inform and 

interact with them. From being simple solution tools, 

optimization techniques become effective support for 

conceptual design. The process of form improvement 

turns into form exploration. Taking advantage of 

optimization as a design instrument of form explo-

ration is called computational morphogenesis.
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The brief

A local park requires a new visitor’s centre, to be built 

next to a small river. It requires a small footbridge to 

provide access from the other side. We design both 

structures as continuous shells, with a doubly curved 

surface. The bridge has a span of 24m and a width of 

4m. It is simply supported at the short edges and is free 

along the long edges (Fig. 18.1). The visitor’s centre is 

heavily inspired by, and a freely redesigned homage 

to, the crematorium of Kakamigahara (Fig. 21.5 and 

page 224). This building, designed in 2004–2005 by 

Toyo Ito and Mutsuro Sasaki, has a concrete freeform 

roof structure, which has been optimized by means of 

Sensitivity Analysis (SA), an iterative gradient-based 

optimization technique discussed in Section 21.2.

18.1 Basic implementation

The computational morphogenesis of a shell bridge 

and the Kakamigahara crematorium, discussed in 

the brief, is set up and described in a step-by-step 

procedure involving the following:

1. The formulation of the design problem in 

parametric terms with boundary conditions, other 

constraints, design variables, and search space.

2. The description of the structural performance with 

a fitness (objective) function.

3. The study of the problem by mapping the search 

space into the objective space as a ‘fitness landscape’.

4. The use of a genetic algorithm to explore the 

solution space and identify optimal forms.

5. The interpretation of results of the computational 

process.

In order to perform a basic optimization process, we 

need the integration of three different digital tools: 

a geometry modeller (usually a CAD application), 

which can provide parametric control on shapes; 

an FE (finite element) solver; and an optimization 

algorithm.

18.1.1 Parametric model and search space

The shell bridge, 24m × 4m in plan, is constrained 

along the short sides of the shell and is free along its 

long edges. The surface is generated by two orthogonal 

section curves. They are parabolas defined by one 

parameter each: the heights  x 
1
  and  x 

2
  (Fig. 18.1).

The side vertex of the transverse curve lies on the 

longitudinal curve’s middle point and the constrained 

edges of the surface are always straight segments. The 

other transverse sections are parabolas with decreasing 

height, from the vertex to constrained sides.

This parametric definition of the surface guarantees 

that, by varying the values of  x 
1
  and  x 

2
 , four configura-

tions can be obtained: a completely flat surface (Fig. 

18.2a); positively, doubly curved surfaces (Fig. 18.2b); 

negatively, doubly curved surfaces (Fig. 18.2c); and 

cylindrical surfaces (Fig. 18.2d).

Since these two parameters effectively control the 

overall shape of the bridge,  x 
1
  and  x 

2
  are chosen as the 

parameters. For both we have established a domain 

spanning from -40m to +40m. This means that the 

search space of this problem is two-dimensional and 

can be represented as a grid of values from -40 to 40 

in its x and y axis.

The parametric definition proposed above is then 

implemented in the geometry modeller. When the 

GA calls for a shape in terms of a set of  x 
1
  and  x 

2
 , the 

CAD modeller generates the corresponding NURBS 

(non-uniform rational basis splines) surface, providing 

the object to be evaluated. For the FE analysis, a 

discrete model has to be generated. The geometry is 

discretized into a mesh, composed of shell or beam 

elements, depending on the type of structure. For this 

x
1

4m

24m

x
2

Figure 18.1 Parametric definition of the design variables for 
the shell bridge
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exercise, the shell is simplified as a gridshell of compa-

rable mechanical properties.

The construction of an FE model for structural 

optimization presents some differences with the ones 

used in normal analyses. Complex models require 

time-consuming calculations, which represent bottle-

necks in the flow of operations. The first requirement 

of FE models for optimization is to be simple, with a 

number of elements strictly necessary and with a mesh 

correctly defined to evaluate the pertinent aspect of 

structural behaviour. Even with a powerful hardware 

set-up, the repetition of hundreds or even thousands 

of analyses might transform the optimization process 

into an extremely long task.

18.1.2 Structural fitness (objective) function

Displacements, strains, stresses and strain energy are 

basically the effect of a load condition on an elastic 

structure. A stiff structure will show small displace-

ments and strains, while a strong structure will result 

in relatively small stresses, and both will have small 

strain energy. Displacements are a vector field, stresses 

are a tensor field, locally defined, and the strain energy 

is a scalar value, computed as an integral over the 

whole structure. Such quantities can be adopted as 

a measure of the structural performance. However, 

their differences will drive the optimization process to 

search for different optimal solutions.

For this exercise, the maximum displacement of 

the whole structure is chosen as the fitness function 

to be minimized by the GA. As opposed to the strain 

energy, nodal displacements can reveal local, as well as 

global, weaknesses.

18.1.3 Fitness landscape

Considering that the optimization problem proposed 

is defined by only two parameters (design variables), 

we can further explain the work done by the GA 

using a graphical representation. We first map out the 

solution domain of  x 
1
  and  x 

2
  by taking a two-dimen-

sional parameter grid with grid points P (  x 
1
 , x 

2
  ) . By 

assigning a z value to each point of the grid, we 

convert it into a three-dimensional landscape in 

which z represents the fitness calculated for the shape 

(individual) corresponding to that grid point P. For 

example:

for P ( 0,0 )  the maximum displacement   
z
  is 285mm;

for P ( − 26,1 )  the maximum displacement   
z
  is 

21mm;

for P ( 40,40 )  the maximum displacement   
z
  is 

43mm.

By repeating this operation for the entire solution 

domain, we end up with a fitness landscape. Figure 

18.3 shows the fitness landscape, which has many 

local minima, two global minima and an area of global 

maxima.

18.1.4 Genetic algorithm parameters

Appendix C describes the importance of a correct 

formulation of parameters and operators of GAs, in 

order to properly perform in any given problem. For 

this exercise, the GA uses a binary coding of design 

parameters with mutation and elitism operators. It 

terminates after twenty generations with a population 

size of 100 individuals.

(a) (b) (c) (d)

x1 > 0

x2 > 0

x1 < 0

x2 < 0

x
1
 > 0

x2 < 0

x1 < 0
x2 > 0

x1 > 0

x2 = 0
x

2
=  0

x
1
=  0

Figure 18.2 The four possible shape configurations with parameters values
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Figure 18.3 Fitness landscape, GA progress and relevant shape configurations
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The binary representation of design parameters, 

forming the chromosome of every individual, has 

been proved to extract the largest amount of infor-

mation. However, different kinds of representations 

have been studied, such as simply using the real values. 

When the number of design parameters is small, as 

in the case of this exercise, the representation scheme 

or coding strategy is relatively influential on the 

algorithm performance.

The two variables ( x 
1
  and  x 

2
 ) are here coded into 

eight digit binary numbers or genes. Such genes are 

combined into one chromosome with the  x 
1
  value 

positioned first and the  x 
2
  as second. The single point 

crossover operator is used. (For further details about 

the crossover operator, see Appendix C.)

18.1.5  Search, optimization and result 
interpretation

In Figure 18.3, we see a three-dimensional represen-

tation of the fitness landscape for this exercise. Such 

a graphical tool allows us to study the exploration 

performed by the GA within the solution domain and 

to evaluate its efficiency by mapping – generation by 

generation – the optimization progress (see the plan 

views at the bottom of Figure 18.3). The figure also 

shows different configurations of the bridge structure 

in relevant points of the fitness landscape. It is of 

particular interest to see how the shapes of the local 

minima differ from one another, even if they possess 

similar fitness values.

Optimization aims to find global minima but we 

have seen with this exercise that, by using a morpho-

genetic approach, even other sub-optimal candidate 

solutions might be worth considering.

Figure 18.3a is the global minimum as found 

by the GA after twenty generations. It is a hypar 

with a maximum displacement of 16.9mm. Because 

of the symmetrical nature of the problem, we can 

say that Figure 18.3e is the symmetric opposite to 

Figure 18.3a and becomes a global minimum as well. 

Figure 18.3b represents the global maximum, a flat 

surface with a maximum displacement of 285mm. 

Other configurations of interest are Figure 18.3c, a 

local minimum with very tall parabolas forming an 

irregular hypar, and Figure 18.3d, a near optimal 

cylindrical configuration.

18.2 Advanced application

In order to show the potential of a computational 

process of morphogenesis, such a technique has been 

applied to an existing building, starting from the 

significant issues of the architectural program and 

generating alternative project configurations. The 

building is the crematorium of Kakamigahara, a thin-

shell, reinforced-concrete roof designed by architect 

Toyo Ito in collaboration with structural engineer 

Mutsuro Sasaki. The characteristics of this project 

make it a good testing ground for investigating how 

computational morphogenesis can enhance the work 

of architectural designers.

The spatial concept of the building is based on a 

freeform smooth roof that suggests ‘rolling hills’ and 

‘slowly fluctuates above the site, like clouds’. Further, 

the roof is pulled in some locations to the ground to 

form a set of vertical supports. The dips and bumps 

of the shell, as well as the position of the columns, do 

not follow any criterion of geometrical regularity (Fig. 

18.4) as the lack of direct relation between columns 

and internal walls suggests. Clouds and hills, as many 

natural shapes, are always characterized by some kind 

of irregularity and randomness, as well as the internal 

stochastic operators of the GA. The search algorithm 

can then reproduce directly this aspect of the concept.

Figure 18.4 The crematorium of Kakamigahara by Toyo 
Ito and Mutsuro Sasaki. Plan view and section of the original 
project with highlighted boundary conditions, fixed supports 
and solution domain of the morphogenetic process
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In a traditional approach, the design process starts 

from an architect’s sketch – just a few lines on 

paper – to outline initial suggestions and ideas. Those 

sketches are translated afterwards into more complex 

shapes, also taking in account the third dimension 

and the actual development in space. Such a stage 

could involve dramatic simplifications, perhaps to 

reach a more manageable shape. However, it could 

also preserve the original richness of the idea by 

means of suitable representation of the surface. A 

CAD model of the building roof is then produced 

and submitted to the structural consultants in order 

to check and possibly improve its structural behaviour. 

The stiffness, and consequently the efficiency of the 

concrete shell, can then be investigated through a 

sensitivity analysis (Section 21.2) by locally modifying 

the surface geometry and checking the influence of 

changes on the displacements under gravity load. The 

structural optimization takes as an input a specific 

initial spatial concept iteratively searching for better 

configurations, following what we previously defined 

as a process of form improvement.

The availability of optimization techniques such 

as GAs opens the way to another design approach: 

instead of defining a starting shape to modify, the 

architect can provide a parametric model, defined in 

terms of boundary conditions, the design variables and 

the solution domain. This implies a clear consciousness 

of the major architectural aspects of the project, as well 

as of the ones which are less relevant. With reference 

to the crematorium roof, the exact position, size and 

height of bumps seems to be less important than the 

general ‘bubbling’ or ‘waving’ effect. This could be 

better controlled by global parameters, such as the 

number of bubbles, their average size and width-to-

height ratio.

Once the relevant architectural aspects of the roof 

are defined in the parametric model, the GA becomes 

free to explore possible variations of the geometric 

system, providing the designer with different shapes, 

increasingly improving some structural performance 

criterion.

18.2.1 Parametric definition

In the proposed application, the crematorium roof 

shape is represented by a third-degree NURBS 

surface. This allows easy modifications by directly 

acting on the control points, whose position defines 

the polynomial coefficients. The generation of a 

two-parameter NURBS surface requires three to four 

boundary curves and is defined by a grid of control 

points which, except for the ones laying on the 

boundary, do not belong to the surface itself.

The plan view of the building of the crematorium 

has an irregular shape, roughly defined by five sides. 

They must be converted into a four-curve boundary 

to generate a NURBS surface. This process affects the 

overall shape, as well as the control point positions 

on the surface shape. The number of control points 

defining the grid can be decided by the designer and is 

the most important issue. Their coordinates represent 

the degrees of freedom of the problem. A large 

number of points increases the dimensionality of the 

solution domain (search space), but can also generate 

newer solutions, far removed from the original concept. 

Furthermore, control points can be used to simulate 

specific situations, such as the presence of constraints. 

In Figure 18.5, two different control point networks, 

generated from different starting curves, are shown in 

plan view. The blue circles represent the fixed points, 

which correspond to the tops of the columns.

Once those boundary conditions are defined, the 

vertical coordinates of control points are assumed as 

design variables. In other words, they are constrained 

to a unique plan projection while their height, which 

generates the ‘waves’, is free.

The solution domain of the problem, or search 

space, contains all the surfaces sharing the prescribed 

plan projection and fixed points, while the vertical 

position of each control point is defined by a range of 

values. It should be underlined that such a parametric 

definition and the range of variability of the design 

parameters substitute what has been previously called 

the ‘initial shape’.

18.2.2 Search space

The success of the morphogenetic process largely 

depends on the definition, or design, of the solution 

domain (search space). In optimization and search 

problems, scalar variables are bounded in a range 

with a lower, upper and mean value. The domain is 

an n-dimensional hypercube, but when the variables 
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represent point locations in the three-dimensional 

space, it becomes the bounding box of all the possible 

shapes. This plays a role from an architectural point 

of view.

When the domain is just a narrow layer, the points 

defined by the mean values form a mean surface that 

can be considered similar to an initial shape of optimi-

zation processes – the final result will be relatively 

close to that configuration (Fig. 18.6).

On the contrary, with a wide domain, the GA 

process is able to generate forms without any relation 

to the domain shape, except for being included in 

it. In computational morphogenesis, the concept of 

initial shape does not make any sense. The process 

can produce, or make emerge, unexpected results. 

Furthermore, wider domains allow finding more 

sub-optimal solutions, which can be of interest to 

architectural designers. Investigating sub-optimal 

solutions is a powerful way of understanding relations 

between form and structure.

18.2.3 Evaluation of the structural behaviour

After the abstract definition of the set of potential 

solutions, a measure of the structural performance 

must be chosen in order to drive the optimization 

process. The definition of the fitness function involves 

two main aspects. First, the designer has to choose 

or define what performance is more significant for 

the building, and how to evaluate it quantitatively. 

Second, a computational model for the simulation 

of the performance must be developed. The whole 

behaviour of a concrete shell under dead load, service-

ability loads, snow, wind and earthquakes, as well as 

the assessment of a suitable safety level are tasks too 

complex to be included in the search process. The 

state of deformation, expressed by internal strains and 

displacements, is usually considered a valid measure, 

because in curved shells the stiffness is strictly related 

to the shape. In search algorithms, the fitness function 

is a scalar, to be minimized or maximized, depending 

on the problem. Hence, it should be a functional of the 

displacements or strains (a functional returns a scalar 

from a vector input, or a scalar field from a vector 

space). One possibility is provided by the strain energy, 

which is an integral over the shell of a function of the 

strains. In a general approach, the functional can be 

given by the norm of the strains or of the displace-

ments fields, mainly when they are discretized in finite 

vectors of values, as nodal displacements. A p-norm 

assumes different values depending on the p exponent. 

Two cases are of interest: p = 2, the Euclidean norm, 

and p = ∞ , the so-called maximum, or infinity norm. 

Applied to nodal displacements, the maximum norm 
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Figure 18.5 Two different control point networks based on different boundary generative curves

Figure 18.6 Wide and narrow solution domains (search 
spaces)
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can reveal local situations of stiffness lack, due to the 

shell shape. We choose this measure in the application.

The second step in the fitness evaluation involves 

the choice of the computational tool for the perfor-

mance analysis. In case of a performance related to 

the mechanical behaviour, an FE solver can be used 

to analyse the model and to evaluate the performance. 

The use of an FE solver requires some preprocessing 

steps, such as the creation of the mesh, the definition 

of the material properties, and application of the 

boundary conditions (loads and constraints). Here, the 

NURBS surfaces are meshed as 50×50 four-node, flat-

shell elements, with a thickness of 0.30m, a Young’s 

modulus E of 30,000MPa and a load of 1kNm-2. The 

constraints are fixed supports above the columns.

18.2.4 Morphogenetic process and results

Figure 18.7 represents the flowchart of the optimi-

zation process. Candidate solutions are first described 

as NURBS surfaces, then converted as structural 

meshes for the FE analysis, and finally coded as binary 

chromosomes for the GA.

In Figures 18.8 and 18.9, the iterative procedure 

of structural morphogenesis has been summarized, 

showing, every tenth generation, the plan view with 

vertical displacements of the roof structure on the left 

side of Figure 18.8, and the related perspective view 

of its spatial configuration on the right. In a first step, 

the edges of the structure, as well as its central part, 

present large vertical displacements, with a maximum 

displacement   
z
  = 52mm. The shell curvature is generally 

moderated and the algorithm explores for another thirty 

generations of new complex curved surfaces that become 

increasingly wavy and gradually reduce these points of 

structural weakness. Next, in the last forty iterations, 

the algorithm converges towards a single good solution, 

only refining some local parts of the structure. At the 

end of the evolutionary process, the maximum vertical 

displacement of the final shape is about ten times lower,  

 
z
  = 5mm, than the maximum displacement of the best 

individual of the first generation.

18.2.5 Discussion

The morphogenetic process shown in this chapter 

demonstrates how the GA operates through 

exploration and exploitation of design solutions, and 

how they can be put to good use in architectural and 

structural design problems.

The exploration capabilities of the GA are used 

to generate and consider as many different design 

options as possible. Depending on the problem and 

its formulation, a single population in the GA can 

contain solutions of similar fitness values but very 

different shapes. When the architectural concept is 

translated into a domain of potential shapes, all such 

different shapes only implicitly exist, while, once 

generated and proposed by GA’s exploration, they 

become alternatives that the architect can consider. 

For example, Figure 18.10 shows three equally valid 

options following from the morphogenetic process.

The exploitation capabilities of the GA are used in 

order to guarantee the solutions proposed by the GA 

are optimal, or near optimal solutions. In the fitness 

landscape shown in second part of this chapter we saw 

that different solutions of similar fitness values gather 

in families: around local minima. While not all of 

them represent the global optimal solution, the exploi-

tation process reaches the best fitting of each family, 

providing the architect with near optimal suggestions. 

We saw that the double curvature configuration was 

the global optimum, but that the cylindrical configu-

ration was not far off in its fitness value.

The exploration in the GA guarantees wider search 

and also diversity; the exploitation provides optimal or 

near optimal solutions. Some GAs employ operators 

specifically to guarantee such diversity (niching 

operators). Sometimes, in order to obtain valid alter-

natives with high fitness values, we need to launch the 

GA several times with different genetic parameters.

As we can see in Chapter 21, the approach used 

by Sasaki focuses on exploitation and optimization 

of an initially well-defined solution. The exploration 

of alternative design solutions is performed out of 

the computational process, without any consideration 

of optimal structural behaviour. The optimization 

purpose is to search for optimal shapes that differ the 

least from Toyo Ito’s design proposal. We can say that 

the exploration in this case is being done exclusively 

in an architectural context by Ito, and the exploitation 

is done later by Sasaki in a more reduced search space. 

Such an approach leaves more freedom to the architect, 

but it limits the benefits of structural search to the 
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Figure 18.7 Flowchart of the structural procedure of morphogenesis by means of a GA
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Figure 18.8 Overview of the morphogenetic process: geometrical configurations and structural behaviour at different 
evolutions phases of the procedure
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refinement of the project, as in classical optimization. 

The morphogenetic design approach, however, assumes 

the search techniques as design aids, capable to help 

the designer even at the early stage, enhancing their 

capacity to develop performing and efficient shapes.

Key concepts and terms

Computational morphogenesis is a design process 

that takes advantage of the two main features of 

evolutionary algorithms: exploration, of a wide set of 

possibilities, and exploitation, of the best solutions 

generated, in analogy with natural evolutionary 

processes. The designer strongly interacts with the 

algorithm, providing a continuous input to the evolu-

tionary search.

Sensitivity analysis is, generally speaking, the evalu-

ation of how a model prediction is influenced by 

inputs, obtained by varying the input and checking 

the corresponding output variation. In deterministic 

optimization, processes can be used to drive the 

algorithm to follow the most ‘efficient’ path in the 

solutions domain.

Fitness landscape is a graphical representation of the 

fitness values as a function of the design variables. It 

can show global, as well as local minima. It can also 

play a central role in the interaction between designer 

and evolutionary algorithm, allowing the development 

of an autonomous knowledge and judgement on the 

fitness function.

A parametric definition uses elements, or objects, 

and relationships among them, that is, the invariants 

of every design process. For instance, a masonry wall 

could be parametrically described by setting up length, 

width and height of every brick, plus their spatial 

interrelations. Designers generate topological spaces 

rather than metric ones and they are free to concen-

trate on numerical variations of the system parameters, 

within discrete or continuous domains.

Scripting is the development of small snippets 

of codes, called ‘scripts’, that only work under the 

presence of more sophisticated supporting commercial 

software. Scripting was born in the 1960s with the 

aim of automating long and repetitive operations. It 

has become a way of extending and customizing the 

standard possibilities offered by programs to better fit 

specific user requirements. The most common CAD 

applications implement simple scripting environments.

Figure 18.10: Three different shapes generated by the morphogenetic process
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Figure 18.9 Fitness evolution during the morphogenetic 
process
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Exercises

The 24m × 4m shell bridge was parameterized with 

just two variables. Generate a parametric (NURBS) 

model of the standard 10m × 10m footprint using 

more parameters, and in such a way that the forms 

generated can improve fitness function values. The 

parameters are z-coordinates of the control points 

of the NURBS surface.

Generate a different parametric model that repre-

sents the same concept with different kinds of 

variables. See Chapters 5 and 16 for possible 

parameterizations.

Computational morphogenesis can produce many 

near-optimal solutions. Using the design space 

developed in the previous exercises, can you extract 

and discuss very different-looking shapes?

Further reading

An Introduction to Genetic Algorithms, Mitchell 

(1998). This book is a simple and complete intro-

duction to genetic algorithms, implementing the 

main concepts of the work and research developed 

by Holland, Goldberg and Koza during the last 

four decades. It should be used to program a basic 

GA procedure, as well as for the development and 

tuning of the routines related to the three main 

GA operators.

Flux Structure, Sasaki (2005). This book describes 

the philosophy of structures by Mutsuro Sasaki. 

The Evolutionary Structural Optimization (ESO) 

method is discussed, as well as Sensitivity Analysis 

(SA).
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CHAPTER NINETEEN

The Multihalle and the 
British Museum
A comparison of two gridshells

The terms ‘gridshell’, ‘lattice shell’ and ‘reticulated shell’ 

all mean essentially the same thing, a shell structure 

made of a grid, lattice or net of elements of any 

material, or possibly a continuous surface with lots 

of holes. The word ‘reticulated’ comes from the Latin 

‘reticulum’, meaning a small net.

We are going to compare the Mannheim Multihalle 

and British Museum gridshells by classifying them 

according to a number of criteria. The reason for 

such a classification is to help the designer of a new 

gridshell understand the decisions to be made and 

how they may or may not interact. It is hoped that 

the lessons learnt on these two structures can be 

applied to other gridshells. It should be noted that 

the people who defined the geometry of these two 

structures were primarily interested in their structural 

action, following the edict that ‘form ever follows 

function’ (Sullivan, 1896), at least as far as the design 

constraints allowed.

In order to undertake a taxonomy of gridshell struc-

tures, that is, to classify them according to a logical 

system, we need to decide what are the important 

characteristics that define a particular structure.

Different people may emphasize different aspects. 

It would be perfectly reasonable for someone to 

include both bats and mice in the category ‘small furry 

things’, which would not include humans (not furry or 

small) or camels (not small). Many languages describe 

bats as flying mice – English has the words flitter-

mouse and flutter-mouse. An aeronautical engineer 

may be interested in the aerodynamics of bats’ flight 

in comparison with birds and categorize animals 

by if and how they fly. However, a biologist might 

classify using shared evolutionary ancestors and point 

out that bats are not rodents, indeed bats are in the 

group Laurasiatheria, along with pigs, camels, whales, 

dogs and cats, whereas rodents are in the group 

Euarchontoglires, as are humans.

No one system of classification is right or wrong, it 

just depends upon which characteristics are particu-

larly important to an individual. The same individual 

may emphasize different characteristics at different 

times depending upon what is uppermost in their 

minds.

19.1 The two structures

We will only give brief details at this stage and 

consider things in more detail when we compare the 

structures.

Chris Williams
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The Multihalle gridshells (Fig. 19.1) in the 

Herzogriedenpark, Mannheim, were constructed 

for the 1975 Bundesgartenschau (Federal Garden 

Exhibition). The architects were Carlfried Mutschler 

+ Partners with Professor Frei Otto, the engineers 

were Ted Happold’s group at Ove Arup & Partners 

and the timber contractor was Wilhelm Poppensieker. 

The geometrical form was derived from Frei Otto’s 

hanging model (Fig. 4.14). Büro Linkwitz replicated 

the physical model with a computer model which was 

used for fabrication and erection (see also Chapter 

12). With an 80m span, 7,400m2 of roofed area and 

a self-weight of 20kgm-2, this structure remains the 

world’s largest application of a timber gridshell, and 

in general, one of the largest and lightest compression 

structures ever built. The German authorities were 

understandably and rightly concerned about the safety 

of the structure and asked for a load test (Fig. 19.2). 

Much to the relief of all concerned, the results were 

almost identical to the predictions that we had made 

prior to the test. It was conceived as a temporary 

structure with a life of twenty years, but is still there.

The British Museum Great Court gridshell in 

London was completed in 2000, the architects were 

Foster + Partners, the engineers were Buro Happold 

and the steel and glass contractor was Waagner-Biro 

(see page 238). The surrounding building cannot 

provide any horizontal restraint and the roof therefore 

sits on sliding bearings. Thus form-finding techniques 

such as hanging models could not be used because 

the shell has to work in both tension and compression. 

Hence the form was determined geometrically 

(Williams, 2001). I was responsible for the structural 

analysis of the Multihalle when I worked for Arup. I 

was also responsible for the geometric definition of 

the British Museum, working with Filomena Russo at 

Foster + Partners, and the structural analysis, working 

with Andrew Chan at Buro Happold.

Figure 19.1 The gridshells for the Mannheim Multihalle

Figure 19.2 Load test where dustbins full of water were hung from the roof by wires
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19.2 Comparison

In Table 19.1 we have chosen twelve categories to 

compare and contrast these two shells. They are 

largely independent; for example, while timber 

suggests continuous members, that is not always 

the case – the timber gridshell over the courtyard in 

Portcullis House, London by Hopkins Architects has 

discontinuous timber members. To do this they had 

to overcome the problem of transferring force and 

moment from member to member across the joints, a 

not inconsiderable problem in timber.

19.2.1 Inextensional deformation

We have chosen to put inextensional deformation 

first in the category table. What does this mean? In 

general when a structure deforms it involves changes 

in both length of elements and bending of elements. 

It is easier to bend than stretch or compress most 

structural elements and inextensional deformation is 

deformation that only involves bending. Thus struc-

tures which have inextensional modes tend to be more 

flexible and less efficient. The two structures have 

inextensional modes for different reasons. The surface 

of the British Museum gridshell is fully triangulated, 

but the structure is on sliding supports around the 

rectangular outer boundary which means that it can 

only exert a horizontal thrust into the corners where 

the force is resisted by the edge beam in tension.

The Mannheim gridshells are nicely supported 

around the boundary but the surface is not fully 

Category Mannheim gridshell British Museum gridshell

Inextensional deformation possible? Yes Yes

Probable collapse mechanism Creep buckling Elasto-plastic buckling

Dominant controlling collapse 
parameter

Bending stiffness (including effect of 
creep)

Bending stiffness and bending strength

Structural analysis Physical model and nonlinear computer 
analysis using Newton–Raphson 
algorithm

Nonlinear computer analysis using 
dynamic relaxation. Program written 
specifically for this project.

Geometry definition Hanging model, both physical and 
numerical

Mathematical function for surface. Grid 
relaxed numerically on surface.

Span Approximately 60m Approximately 35m

Material Timber – hemlock, a straight grained 
conifer

Steel plate welded to form box sections 
and welded to nodes

Continuous members? Yes, members cross at nodes in 
different planes (Fig. 19.4) 

No, members all lie in same plane at 
a node and are welded to a machined 
node piece

Structural grid pattern Quadrilateral, constant edge length of 
0.5m

Triangles, varying sizes and angles

Cladding material Flexible plastic sheet Double glazed units

Cladding grid Same as structural grid Same as structural grid

Erection technique Pushed up from below (Fig. 19.3) Area fully scaffolded and structure 
fully propped. Partly prefabricated and 
partly welded in situ.

Table 19.1 Comparison of the Mannheim Multihalle and the British Museum Great Court roofs

Figure 19.3 Erection process
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triangulated and therefore there are inextensional 

modes, exactly as for a kitchen sieve made from a 

woven wire mesh that is formed into a hemisphere 

from a flat sheet by bending only. The Mannheim 

gridshells do have partial restraint of inextensional 

modes by light bracing cables. Two-way steel shells 

with moment connections between the two directions 

can use Vierendeel action to restrain this in-plane 

shear deformation due to relative rotation of the 

two sets of members. By Vierendeel action we mean 

carrying shear force around a quadrilateral by bending 

moments, as in a Vierendeel truss.

19.2.2 Collapse mechanisms

If a shell or gridshell structure can deform inexten-

sionally, then bending stiffness and strength will 

probably be the dominant criteria controlling collapse. 

As a gridshell deflects under load, its shape becomes 

less efficient at carrying the load, at least if the load 

causes compressive forces in the structure. This might 

cause collapse even without material breaking or 

yielding – purely elastic buckling. If yielding occurs 

then we have elasto-plastic buckling, the probable 

collapse mode for the British Museum structure, were 

it to be overloaded. The nodes were designed and 

tested to ensure a plastic collapse, rather than brittle 

failure leading to progressive collapse.

Timber will creep and therefore the most likely 

collapse mechanism for Mannheim would be creep 

buckling in which the structure slowly moves and as 

it moves the moments and stresses increase leading 

to an increase in the rate of creep strain and so on in 

a vicious circle. This means that the hanging chain 

geometry is optimum, because the self-weight is the 

load that is there all the time.

If inextensional deformation is not possible, then 

Wright (1965) suggests that an estimate of the 

buckling of a shell can be found by considering an 

equivalent conventional shell of uniform thickness. 

The classical eigenvalue or linear buckling load for 

a spherical shell, radius a and thickness h, under 

uniform pressure is

  p 
cr
  =   2E h 2 

 __________ 
 a 2  √

_______
 3 ( 1 −   2  )   
  , (19.1)

where E is the Young’s modulus and  is Poisson’s 

ratio.

We can rewrite this as

  p 
cr
  =   4 __ 

 a 2 
   √

___
 Eh   √

_______

   E h 3 
 _______ 

12 ( 1 −   2  ) 
     (19.2)

=   4 h 2 
 ___ 

 a 2 
   √

______________
  membrane stiffness   √

____________
  bending stiffness  

in which bending stiffness assumes zero curvature in 

the orthogonal direction, while the membrane stiffness 

assumes zero stress in the orthogonal direction. But 

these distinctions are not relevant given that (1 −  ) 2  

is close to 1.

Figure 19.4 Timber grid and node detail of the Multihalle
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Thus if we can estimate the membrane and bending 

stiffnesses per unit width, we can estimate the buckling 

load. However, this classical eigenvalue buckling load 

for shells is highly optimistic and no experiments have 

ever got near. The reason is that shells which cannot 

undergo inextensional deformation are extremely 

efficient and extremely stiff, but they are also very 

imperfection sensitive so that the slightest deviation 

from the ideal shape leads to sudden collapse.

19.2.3 Imperfection sensitivity

Thus the fact that the Mannheim and British Museum 

gridshells can undergo inextensional deformation 

makes them less efficient, but also less sensitive to 

imperfections. The Mannheim model tests showed 

that the collapse was definitely nonlinear since large 

deflections took place prior to collapse and some parts 

of the structure were actually hanging in tension of 

other, still stiff areas.

The membrane flexibility of the Mannheim 

timber grid due to relative rotation of the two sets 

of laths effectively reduces the membrane stiffness in 

comparison to the bending stiffness (Fig. 19.4). This 

is like making a conventional shell from a very thick 

but flexible material, such as sponge rubber, to give 

an increased bending stiffness to membrane stiffness 

ratio. Such a shell would not be particularly imper-

fection sensitive.

19.2.4 Structural analysis

We have seen that collapse loads predicted by classical 

linear eigenvalue buckling of shells can be wildly 

optimistic, and anyway not applicable to structures 

such as the Mannheim or British Museum gridshells. 

At the time that Arup was working on Mannheim, 

there were still people there such as Ronald Jenkins 

and John Blanchard, experts on shell theory, who 

had worked on the Sydney Opera House. Between 

us we were not able to come up with hand calcula-

tions which would predict the collapse loads of the 

Mannheim shells. Theories based on arch buckling 

were far too pessimistic. This led to only two possi-

bilities: physical model tests and computer analysis. 

The analysis of the Mannheim Multihalle used both 

approaches, whereas the British Museum gridshell, 

designed a quarter century later, used computational 

models only.

Happold and Liddell (1975) give details of how 

the results from a physical model test can be scaled. 

Scaling laws are also discussed in Section 8.3. Physical 

models give an understanding of impending collapse 

as bits of structure lose their stiffness, which can 

be felt by gingerly touching the model. One might 

be concerned that suggesting a physical model test 

implies a lack of knowledge of gridshell structures, but 

the reverse is true; the more one knows, the more one 

realizes the complexity of their behaviour.

19.3 Conclusion

The discussion of membrane and bending stiffness 

tells us that a gridshell with pinned connections 

should never be built. Local snap-through buckling 

will occur unless the structure has a very coarse grid, in 

which case it is not really a gridshell, but instead just 

a three-dimensional arrangement of bars. Note that 

we are here talking about transmitting moments out 

of the plane of the structure, a triangulated shell does 

not need to transmit moments across the nodes in the 

plane of the structure.

The situation in engineering practice is much the 

same today as it was during the design of both projects, 

except for the increased power of computers and avail-

ability of software. Nonlinear buckling analysis, with 

or without material nonlinearity is still something 

which stretches software capability. Note that two 

pieces of software from different vendors may both 

give the same wrong answer because they both contain 

the same inappropriate assumptions. For example, 

rotation is not a vector unless the rotation is small. It is 

often not clear whether computer programs make the 

assumption of small rotations. For such reasons, one 

should be careful to ensure that any computer results 

are checked, either by other software or physical 

model tests.

Further reading

‘Timber lattice roof for the Mannheim 

Bundesgartenschau’, Happold and Liddell (1975). 

This journal paper provides a comprehensive overview 

of the design and construction of this project.

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


244   CHRIS WILLIAMS

‘The analytic and numerical definition of the 

geometry of the British Museum Great Court 

roof ’, Williams (2001). This book chapter 

describes the mathematical and computational 

methods in sufficient detail to be able to replicate 

the process.

IL 10 Gitterschalen (Grid Shells), Hennicke (1975). 

This book is from Frei Otto’s Institut für Leichte 

Flächentragwerke (IL), renamed as the Institut für 

Leichtbau Entwerfen und Konstruieren (ILEK) 

since Professor Otto’s retirement. The engineering 

content is similar to that in Happold & Liddell 

and was written by the same authors.

‘Membrane forces and buckling in reticulated shells’, 

Wright (1965). This paper relates the properties of 

a gridshell to an equivalent continuum, making 

the theoretical results for shell structures available 

for analysing gridshells by hand calculations. 

Computer calculations for gridshells have no need 

for this approach since modern computers can 

handle models containing every member of a 

gridshell.
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CHAPTER TWENTY

Félix Candela and Heinz Isler
A comparison of two structural artists

Structural artists exhibit three characteristics that are 

fundamental to creating the best-engineered struc-

tures: the ethos of efficiency, the ethic of economy 

and the aesthetic motivation in design. Efficiency 

in this sense means the search for forms that use 

a minimum of materials consistent with sound 

performance and assured safety; economy signifies a 

minimum of construction costs consistent with low 

expense for maintenance. These two fundamentals 

imply a plan that pays attention to both design and 

construction.

One of the greatest myths in our structural 

engineering profession is that elegance in structural 

engineering is the province of architects and that 

while engineers ensure that it will stand, only archi-

tects can make it a work of art. This argument is 

contradicted by the most talented structural engineers 

over the last 200 years whose motivation included 

appearance along with efficiency and economy. Two 

such engineers were Félix Candela (1910–1997) and 

Heinz Isler (1926–2009) (Fig. 20.1).

20.1  Early development as shell 
designers

Both Candela and Isler were designers of thin-shell 

concrete structures who found the forms for their 

shells in different ways, but the outcome was the same: 

efficiency, economy and elegance. In this chapter, we 

examine the background of each that formed their 

development as shell designers, then we study the 

forms that each favoured, and finally we evaluate how 

each achieved economy of construction.

20.1.1 Candela

Félix Candela was born in Madrid, Spain, on 27 

January 1910. He was trained as an architect at the 

Escuela Superior de Arquitectura in Madrid. He had 

chosen architecture as his discipline rather arbitrarily, 

but possessed a strong talent and interest in geometry 

and mathematics.

Due to the Spanish Civil War, Candela was exiled 

to Mexico in 1939, and it is here that he would 

become a shell builder. When Candela arrived in 

Mexico, he embarked on several projects and gained 

valuable experience in design and construction of 

traditional beam-column-type structures. It was not 

until 1949 that he built his first experimental shell (a 

funicular vault), but not without extensive study of the 

analysis of such shells that he learned from published 

papers. In 1950, excited about the success of this 

experimental shell, Candela formed the construction 

company Cubiertas Ala, with his friend Fernando 

Maria E. Moreyra Garlock and David P. Billington
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Candela – the builder – used straight boards to create 

that double curvature and economy of construction 

by using the hyperbolic paraboloid form, which is a 

doubly curved surface generated with straight lines. 

And, finally, Candela – the artist – took a design given 

to him by an architect and modified it to create his 

own work of art. The laboratory was a huge success 

and elevated Candela to international fame.

20.1.2 Isler

Isler was born in Zurich, Switzerland, on 26 July 1926. 

He had a great talent for drawing and watercolours, 

where his art reflected a love of the natural world 

and Swiss landscape. He was attracted to a career 

in painting, but his father insisted on a professional 

degree. Therefore he entered the ETH in Zurich, in 

1945, and graduated five years later with a degree in 

Civil Engineering.

While Candela was born physically in Madrid, 

Heinz Isler was born ‘professionally’ in Madrid. That 

is where a young Isler, coming directly from military 

service, would make his first appearance in front of 

many of the world’s leading shell designers: in 1959, 

at the first congress of the International Association 

for Shell Structures (IASS). His presentation, the last 

of twenty-five, created the greatest impact and largest 

discussion of all. The paper was titled ‘New shapes 

for shells’ (1960) and it described three methods for 

shaping shells:

Figure 20.1 (top) Félix Candela and (bottom) Heinz Isler

Fernandez. The company specialized in shells, and also 

performed the engineering calculations.

Candela’s first significant shell structure was the 

Cosmic Rays Laboratory (Fig. 20.2), built on Mexico 

City’s university campus (UNAM) in 1951, which 

could be no more than 15mm thick at the top so that 

cosmic ray measurements can be made inside the 

laboratory. Candela – the engineer – gave the shell 

double curvature the required stiffness and stability. 

Figure 20.2 Cosmic Rays Laboratory, 1951
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Figure 20.3 Isler’s examples of the endless forms possible for shells, from the 1959 IASS conference (Isler, 1960)
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z
xy

(a)

(b)

Figure 20.4 The hyperbolic paraboloid for (a) curved edges 
and (b) straight edges

1. The freely shaped hill where the concrete is formed 

by the earth that is carved to its desired form, and 

after the concrete hardens the shell is lifted or the 

earth is excavated.

2. The membrane under pressure.

3. The hanging reversed membrane, which he refers 

to as ‘the best method for design’.

The methodologies were unconventional and therefore 

brought out a rash of discussion from distinguished 

designers such as Eduardo Torroja, Nicolas Esquillan 

and Ove Arup.

The last figure of Isler’s paper (Fig. 20.3) shows 

thirty-nine shapes for shells that are possible, with the 

fortieth spot showing ‘etc’, indicating that the variety 

is endless. Isler’s enthusiasm and creativity stems from 

his artistic talents, and also from the encouragement 

of his engineering professor at the ETH Zurich, 

Pierre Lardy. Isler has written:

I think that the most important contribution we 

students got from our teacher Lardy is this:

He reminded us, the engineering students,

that we have in us a sense for esthetics

that we have the right to use it

that we are allowed to mention our opinion

and that we can find and express it in our 

projects

This to my opinion was the invaluable, great, and 

unique contribution he gave to us. Not the statics, 

not the theories, not the investigations were his 

greatest and lasting influence, but encouraging us 

to find and apply esthetics from within us. And for 

this I am very grateful to him.

(Isler, 2002)

Like Candela, Isler founded his own company. While 

it was not a construction company, as was Candela’s, 

Isler worked closely with the builder and planned the 

construction – he had a ‘builder’s mentality’ approach 

to his designs and nearly all his designs were the result 

of innovations developed by taking forms from the 

field.

20.2 Creativity of form

The success of the companies of both Candela and 

Isler arose from developing markets for their widely 

repeated designs: the hyperbolic paraboloid umbrella 

roofs for Candela and the pneumatic roofs for Isler. 

We examine these forms here.

20.2.1 Candela and the hyperbolic paraboloid

Candela has written that the simplest shape to give a 

shell and the easiest and most practical to build is the 

hyperbolic paraboloid. This shape is best understood 

as a saddle in which there are a set of arches in one 

direction and a set of cables, or inverted arches, in 

the other (Fig. 20.4). The shape also has the property 

of being defined by straight lines. The boundaries, or 

edges, of the hyperbolic paraboloid (also referred to as 

a hypar) can be straight or curved. The edges in the 

second case are developed by planes ‘cutting through’ 

the hypar surface.

All Candela’s significant structures were of this 

form and with that discipline he could build them 

only 4cm thick. Chapel Lomas de Cuernavaca (Fig. 

20.5) is an example of a curved-edge hypar, while Our 

Lady of the Miraculous Medal Church (Milagrosa) 

(Fig. 20.6) is an example of straight-edged hypars.
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The form for Milagrosa was derived from an 

umbrella form (Fig. 20.6). Candela devised the 

umbrella form by combining four straight-edge hypar 

surfaces. By placing umbrellas side by side, large 

roof spaces were generated, as shown in Figure 20.7, 

and by tilting the umbrellas, a saw-tooth profile was 

created, which allows light to enter the space.

20.2.2  Isler and the pneumatic form and the 
hanging reversed membrane form

While the climate in Mexico is moderate, Isler’s shells 

were mostly built in harsh environmental conditions 

such as Switzerland and Germany. Isler’s shells were 

typically 8cm thick, twice as thick as Candela’s shells, 

but they still expressed an elegance of thinness. But 

not all of Isler’s shells revealed the shell thickness. One 

Figure 20.5 (top) Chapel Lomas de Cuernavaca, 1958, and 
(bottom) falsework used during construction showing straight 
wood formwork

of his first innovative forms was a pneumatic form, 

devised from a simple wood frame holding a rubber 

membrane inflated with a bicycle pump to achieve a 

form (Fig. 20.8). These pneumatic forms were used 

for roofs such as the one shown in Figure 20.9. The 

exterior shows the prestressed beams surrounding the 

shell for edge support, thus hiding the thinness.

In the early 1960s, Isler saw in a store window 

a book cover with a photograph of the Restaurant 

Los Manantiales designed and built by Candela (Fig. 

20.10). Its form inspired Isler to rethink his forms 

for thin-shell concrete structures and it stimulated 

him to think about how he might express the same 

kind of thinness which he could not do with his 

traditional pneumatic forms. However, he succeeded 

in expressing the thinness with his hanging reversed 

membrane forms, as demonstrated, for example, by 

the BP service station built in 1968 (Fig. 20.11), and 

the Grötzingen outdoor theatre in 1977 (Fig. 20.12).

Isler describes the process of finding the hanging 

reversed membrane form (Figs. 4.8, 5.2 and 20.13): 

(a)

(b)

(c)

Figure 20.6 Our Lady of the Miraculous Medal Church, 
Navarte, Mexico City, 1953–1955, and its design concept in 
three stages (a–c)
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concrete structure under pure bending is a horizontal 

slab. By giving the concrete curvature, the structure 

can span greater distances, and if properly designed, 

Figure 20.7 A series of umbrellas comprising Rio’s 
Warehouse, Mexico City, 1954

Figure 20.8 Wood frame holding a membrane inflated to a 
pneumatic form

‘The process consists of pouring a plastic material onto 

a cloth resting on a solid surface. Once the material is 

evenly spread on the cloth, the solid surface is lowered 

and the plastic-covered cloth, now in pure tension, is 

freely suspended from its corners. In that position, the 

plastic hardens and the solid shell model is turned 

upside down, giving a shell form in pure compression’ 

(Isler, 1980b).

20.2.3 Comparison of shell stresses

Candela identified two types of shells: proper shells, 

which avoid bending stresses and are doubly curved 

(like the hyperbolic paraboloid), and improper shells, 

which carry the load through some bending action. In 

a shell structure, the thickness is significantly smaller 

than its width and length. Bending stresses should be 

avoided since they can lead to rupture or significant 

tension leading to cracking. An example of a thin 

Figure 20.9 Pneumatic form roof. (top) Interior of the 
Eschmann Company, 1958, and (bottom) exterior of one of 
Isler’s designs with prestressed tension ties concealing the 
shell’s thinness
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eliminate or significantly reduce bending. A proper 

shell carries the load through membrane stresses, 

which means that the stresses in the slab thickness are 

evenly distributed. Since concrete has relatively little 

strength in tension, the desired membrane stress for 

concrete thin shells is compression (see also Chapter 3).

Both Candela and Isler’s forms were such that 

the shells were almost in a pure state of compressive 

membrane stress (i.e. negligible bending). Even if 

the concrete can carry the compression or tension 

developed in the shell, steel reinforcing bars are added 

to protect the shell against cracks that could be caused 

by creep, shrinkage and temperature effects.

Isler’s shells, by virtue of his form-finding methods, 

were essentially in a state of pure compression. In the 

Figure 20.10 Restaurant Los Manantiales, Xochimilco, 
Mexico, 1958

Figure 20.11 BP Service Station, Deitingen, 1968

Figure 20.12 Grötzingen outdoor theatre near Stuttgart, 
Germany, 1977

Figure 20.13 The hanging membrane, once hardened, is 
inverted to create a shell form in pure compression
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pneumatic roofs, the form found in the membrane 

(Fig. 20.8) was in pure tension under ‘upwards’ 

pressure from the inside. For a relatively flat shell, that 

pressure load is close to the exact opposite of gravity 

load, so that under the shell’s self-weight, the concrete 

would be essentially under pure compression. For the 

reversed hanging membrane forms, the gravity by 

which the membrane hung upside-down (Fig. 20.13) 

produces pure tension. This tension is changed to pure 

compression once the membrane is reversed.

The double-curvature forms of Candela’s hyper-

bolic paraboloid were also mostly in a state of pure 

compressive membrane stress, even though his form-

finding approach did not necessarily make that an 

inherent characteristic as did Isler’s method. For 

example, finite element studies of Our Lady of the 

Miraculous Medal Church (Milagrosa) (Fig. 20.6), 

designed by Candela, showed that very little bending 

stresses develop in the shell of this church (Fig. 20.14), 

which is consistent with finite element studies of 

Candela’s other major works done by us.

Figure 20.14 shows the maximum principal stresses 

at the top and bottom of two bays of the church. The 

sign convention is such that positive represents tension, 

and negative compression. The maximum principal 

stress thus represents the maximum tension (or least 

compression). Although the minimum principal 

stresses (representing the largest compression) stresses 

were larger in absolute magnitude, we only show the 

positive (tension) stresses since these would indicate 

danger of cracking and can also give an indication 

of bending. It is seen that the stresses are generally 

quite low, and also close to the same value on top 

and on bottom, indicating that there is no significant 

bending in the shell. The same finite element study of 

Milagrosa also showed that the scalloped ridge (the 

thickening of the shell from 4cm to 14cm at the top of 

the roof ) serves a structural function first (eliminates 

dangerous tension), and an aesthetic one second.

20.3 Economy of construction

The construction of concrete shells requires scaffolding 

(sometimes referred to as falsework), a temporary 

structure of wood or metal that supports the form 

boards and wet concrete. Form boards are placed 

on top of the scaffolding and mould the concrete, 

while it hardens, into its proper form. Designers 

and contractors have often shied away from curved 

concrete forms, believing that they would be expensive 

since they are custom, curved forms. Candela, however, 

understood that hyperbolic paraboloids, while doubly 

curved, can actually be formed from straight lines (Fig. 

20.4). And Isler understood that by reusing the curved 

forms on several projects, economy of construction 

can be achieved. This section examines in more detail 

the different ways that each designer, Candela and 

Isler, planned the construction for their works.

20.3.1 Candela the builder

Candela’s practice was that of a builder and contractor, 

and that is how he identified himself: ‘I must say … 

that although an architect by training, in practice, I am 

a constructor and building contractor’ (Candela, 1955). 

Candela found the construction process of paramount 

importance in a project. In his words: ‘few people 

realize that the only way to be an artist in this difficult 

specialty of building is to be your own contractor. … it 

may be shocking to think of a contractor as an artist; 

but it is indeed the only way to have in your hands 

the whole set of tools or instruments to perform the 

forgotten art of building, to produce “works of art”’ 

(Candela, 1973).

The doubly curved surface of hyperbolic parabo-

loids appealed to Candela for three major reasons: 

added stiffness, ease of construction and visually 

elegant. The ease of construction is due to the fact that 

the surface, while doubly curved, can be constructed 

-1.57 2.50 N/mm21.87-0.63 0 0.93

compression tension rupture stress

Figure 20.14 Shell stresses in two bays of the Miraculous 
Medal Church (see Fig. 20.6) (Thrall and Garlock, 2010)
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with straight form boards of wood (Figs. 20.4–20.5). 

By not using curved form boards, and reusing the 

wood, Candela was able to bid projects at a compet-

itive price. Once the forms are placed, steel reinforcing 

is added. Because thin shells typically are not vibrated 

(a process in concrete construction to move the wet 

concrete through the reinforcement and ensure its 

even distribution in the form), Candela placed a layer 

of cement grout over the form to obtain a smooth 

interior surface before the concrete (which contains 

gravel) was poured. Then, the concrete, typically 4cm 

thick, was placed by the labourers who carried it in 

buckets (Fig. 20.15).

Structures such as Cuernavaca, Milagrosa and 

Los Manantiales are examples of ‘custom’ structures 

because they were not repeated. However, Candela 

had a standardized, ‘bread and butter’ structure that 

he designed and built repeatedly, which kept his 

construction company in business: the umbrella (Fig. 

20.7), used for markets, warehouses and factories. The 

steady income from umbrella constructions allowed 

Candela the time and resources needed to design and 

build his custom forms, including his favourites: the 

Miraculous Medal Church (Fig. 20.6), the Chapel at 

Cuernavaca (Fig. 20.5), Restaurant Los Manantiales 

at Xochimilco (Fig. 20.10) and the Bacardi Rum 

factory (Fig. 21.1 and page 246).

20.3.2 Isler the builder

Like Candela, Isler had a standardized form that 

kept his company in business. For Isler, this form was 

the pneumatic roof (Fig. 20.9). This relatively stand-

ardized business allowed Isler to build highly original 

structures, such as the BP Service Station of 1968 (Fig. 

20.11), the Sicli Building of 1969 (Fig. 20.16 and 

page 44), the Grötzingen outdoor theatre of 1977 (Fig. 

20.12), and the Heimberg tennis court shells of 1979 

(Fig. 20.17). Isler based each design on his reversed 

hanging membrane method, and, as with Candela, 

each structure, apart from the Heimberg design, was 

unrepeated.

Isler’s construction process begins by erecting metal 

falsework (scaffold) to support the curved laminated 

wooden arches (that will be reused a number of times), 

on top of which are placed wooden slats. Since Isler 

needed expensive curved wooden girders to create his 

forms, he gained economy by constant reuse of those 

forming members (Fig. 20.18). He could sometimes 

use them for his non-standard forms as well.

Figure 20.15 Laborers placing buckets of concrete on the 
shell for Los Manantiales Restaurant (see Fig. 20.10) Figure 20.16 Sicli Company Building, Geneva, 1969
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On these wooden slats, builders place flat 

fibreboards (Fig. 20.18), on which they place the 

reinforcing steel bars. The concrete goes over the steel 

but with no further cover. When concrete hardens, 

the falsework, arches and wooden slats are removed 

leaving the fibreboards to act as insulation which 

serves to prevent the concrete structure from having 

cracks due to differential strains from the cold exposed 

surface above and the warm internal spaces below. 

This construction plan also does away with the need 

for the waterproof covering normally required for 

concrete surfaces, keeping them crack-free, even in the 

harsh environment typical of Switzerland.

20.4 Conclusion

For both Candela and Isler, their central idea came 

from construction: the need to make forms in the field, 

rather than to make calculations first. Both engineers 

first built full-scale shells of traditional forms, which 

they found to be unsatisfactory, but useful to learn 

about construction. Both men sought to develop 

shapes that could, however, satisfy their desires for 

simplicity of form, yet did not require complexity 

of calculation. In the process of thinking about this 

problem, they hit upon different forms. Each engineer 

came to differing conclusions, but with the same basic 

results: first, the structures could be easily built; second, 

they could be formed in such a way as to require 

much thought but to eliminate complex calculations; 

and, third, those shapes could be made to be visually 

elegant.

Figure 20.17 Heimberg tennis court shells, 1979

Figure 20.18 Leuzlinger Sons Building, 1979. Isler standing 
beside glued laminated timber arches, and formwork of 
fibreboard insulation placed on wooden boards

In 1979, twenty years after Isler’s stunning debut 

at the first IASS Congress, both Isler and Candela 

were invited to give plenary lectures to mark this 

special anniversary. This honour illustrates that both 
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men were the leading shell designers of that time. Isler 

called his lecture ‘New shapes for shells – twenty years 

after’. He concluded in this presentation that ‘form 

finding is one of the most important factors in shell 

design. I would say the most important one’, and that 

‘the method of hanging reversed membrane seems to 

be the most efficient one’.

In a lecture given in honour of Candela after his 

death, Isler said of Candela: ‘His structures have a 

lightness and elegance that had never before been 

achieved.’ Candela inspired Isler to achieve this 

lightness of form, which he did with his inverted 

membrane. Both men demonstrated a playful spirit in 

designing the forms for their structures. But, that play 

was disciplined by efficiency and economy. Candela 

used the following words to explain this ethos that 

was embraced by both designers: ‘an efficient and 

economical structure has not necessarily to be ugly. 

Beauty has no price tag and there is never one single 

solution to an engineering problem. Therefore, it is 

always possible to modify the whole or the parts until 

the ugliness disappears’ (Candela, 1973).

Further reading

Candela: The Shell Builder, Faber (1963). This is 

an excellent compilation of Candela’s designs 

that includes discussion, analysis, dimensions and 

drawings of Candela’s works.

Seven Structural Engineers: The Félix Candela Lectures, 

Nordenson (2008). This collection of essays, based 

on a lecture series in honour of Candela that 

started in 1997, discusses the importance and 

influence of Candela’s works. Isler was one of the 

contributors.

Félix Candela: Engineer, Builder, Structural Artist, 

Garlock and Billington (2008). This book examines 

in detail Candela’s greatest works, the evolution of 

his forms, and his life, education and experiences. 

The book was a companion to a museum exhibition 

with the same name.

In this chapter, some general discussion of the 

structural behaviour of Candela’s most important 

shells is given. More detailed structural evaluations 

are found in ‘Structural analysis of the cosmic rays 

laboratory’, Kelly et al. (2010); ‘Analysis of the 

design concept for the Iglesia de la Virgen de la 

Medalla Milagrosa’, Thrall and Garlock (2010); 

‘Finite-element analysis of Félix Candela’s Chapel 

of Lomas de Cuernavaca’, Draper et al. (2008); ‘A 

comparative analysis of the Bacardí Rum Factory 

and the Lambert-St. Louis airport terminal’, Segal 

et al. (2008); and ‘Félix Candela, elegance and 

endurance: an examination of the Xochimilco shell’, 

Burger and Billington (2006).

Heinz Isler as Structural Artist, Isler (1980a). This 

book went together with the first major art museum 

exhibition on Isler’s work.

The Engineer’s Contribution to Contemporary 

Architecture: Heinz Isler, Chilton (2000). This book 

is a culmination of numerous articles by Isler and a 

good summary of Isler’s approach to model making 

and form finding, both for the design of concrete 

shells and for teaching structural understanding.

The Art of Structural Design: A Swiss Legacy, 

Billington (2003). This book examines four Swiss 

structural engineers (Robert Maillart, Othmar 

Ammann, Heinz Isler and Christian Menn) and 

their teachers.
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CHAPTER TWENTY-ONE

Structural design of free-curved 
RC shells
An overview of built works

Mutsuro Sasaki

After many twists and turns, shells developed into 

a main system for large-span structures. Almost 

five decades ago, during a significant point in 

their evolution, these systems became part of 

an architectural trend that sought to break the 

deadlock of functionalist architecture. As a result, 

Reinforced Concrete (RC) shell structures flour-

ished throughout the world during the 1950s and 

1960s. This time is often referred to as the era of 

Structural Expressionism – a period that generated 

new types of architectural spaces from structurally 

rational shells – and remembered as a peculiar page 

in the history of architecture. Notable architects and 

structural engineers such as Pier Luigi Nervi (1891–

1979), Eduardo Torroja (1899–1961), Yoshikatsu 

Tsuboi (1907–1990), Félix Candela (1910–1997), 

Eero Saarinen (1910–1961) and Kenzo Tange 

(1913–2005) are key figures in this Structural 

Expressionist period.

With the exception of Heinz Isler’s works, the 

construction of RC shells declined rapidly after the 

1960s. These structures are rarely constructed today. 

Scarcity of skilled workers, rising prices for formwork, 

cost and schedule challenges, inefficiency of on-site 

fabrication, large deformations and deteriorations in 

the concrete, and a transition to steel gridshells to 

satisfy new demands are perhaps the primary causes 

of their decline. In the end, their potential for archi-

tectural expression faced its limits, and architects lost 

interest.

In the half century following the decline of shell 

construction, the circumstances in architecture 

drastically changed. Comparing only the capabilities 

of architectural expression between then and now, 

today is an entirely different age of architecture. 

Today’s architectural expression is a child of its 

time – these characteristics are evident in architec-

tural shapes. A particular trend in the international 

field of contemporary architectural design is the 

inclination to express informal three-dimensional 

shapes that possess free, complex, mutable, fluid and 

organic characteristics. The structural design of free-

curved RC shells, the subject of this chapter, is one 

manifestation of this trend. In this chapter, the afore-

mentioned trend is treated as a temporary variation 

in shell shapes from classical shells to contemporary 

shells, and a structural design method for free-curved 

RC shells is described as an example of contem-

porary shell design.
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21.1 From classical to contemporary 
shells

Curved-surface shapes are at the core of shell struc-

tures. From a structural point of view, the principle of 

a form-resistant structure is inherent in the curvature 

of these shapes. The shells resist loads by in-plane 

stresses. In a state with no bending stress and only 

in-plane stress, the shell exhibits membrane behaviour. 

This state is an optimal and efficient stress state for 

structures: stresses are uniformly distributed through 

the shell’s thickness, and the full cross section allows 

for effective resistance. Though the ideal membrane 

stress state is unrealizable, this state can nonetheless 

be obtained in nearly the entire shell surface, since 

bending stresses near the boundary sharply decline. 

Here, it goes without saying that the shell’s bound-

aries are critical to achieving a state of membrane 

stress. Until now, only structures composed of various 

geometric forms have been studied as shapes of curved 

surfaces. Classical shells adopted curved surfaces that 

are geometrically traceable because this allowed easier 

analysis, simpler understanding of structural behaviour, 

and more convenient construction.

The RC shell shapes built before 1960 show 

distinctive changes throughout their history: starting 

from the enclosed and semi-spherical shell covering 

the 1932 Algeciras Market Hall by Manuel Sánchez 

Arcas and Eduardo Torroja, to the dynamic and open 

Hyperbolic Paraboloid (HP) surface of the 1959 

Bacardi Rum Factory by Félix Candela (Fig. 21.1), 

to the formative and lively free-curved surface found 

in the 1961 TWA Flight Centre, by Eero Saarinen 

and Associates (Fig. 21.2). Together with modern 

preferences, shell shapes have certainly evolved. These 

changes are interesting in light of the idea that archi-

tecture is an artistic expression of the spirit and the 

sense of the time, as there is an obvious correlation 

between the shapes of shells and the time period.

For contemporary RC shell developments, it is 

essential to reflect back on the works of pioneers such 

as Torroja and Candela, but it is not necessary to 

revert to the conventional shells in all aspects. Today’s 

design environment – for example, the high-degree 

application of computers – has changed from that 

of half a century ago in many ways. In facing these 

changes in our time and environment, adhering to the 

past is not only against the fundamental human desire 

to create, but also shuts out the potential to open up 

the future. As a contemporary structural designer, I 

would like to challenge the norm of classical RC shell 

design.

First, do not always persist in geometric curved 

surfaces. Especially in light of the contemporary design 

aesthetics of structures, geometric shapes might cause 

the feeling of déjà vu to cutting-edge designers. I find 

enormous aesthetic potential in free-curved surfaces, 

which remain largely unexplored. Restraints imposed 

by structural analysis or construction techniques 

hardly exist. Highly figurative shells provide more 

than just an economically rational solution.

Second, do not always strive for the ideal membrane 

stress state. In order to design earthquake-resistant 

shells, it is inevitable to deal with bending stresses; 

shells designed for dynamic loads are fundamentally 

different from shells that consider only gravity loads. 

Depending on the scale of the structures, designs 

in which bending stresses are purposely allowed are 

necessary in some cases. With respect to preventing 

progressive collapses, redundant shells are also desired.
Figure 21.1 The Bacardi Rum Factory with dynamic and 
open hyperbolic paraboloid surfaces, Mexico, 1959

Figure 21.2 TWA Flight Centre with a formative and lively 
free-curved surface, New York, 1961
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Incidentally, the TWA Flight Centre is a pseudo 

shell with a complex geometry of four elliptic parab-

oloid surfaces and boundary structures. Although 

not completely structurally rational, the structure is 

a formative free, RC shell. More specifically, the 

shell suggested a way to break through the barriers 

imposed by engineering and geometry restric-

tions, which tended to reduce the visual potential of 

shells. Compression-only is still the main concern 

for contemporary shells, but flexible designs that 

allow tensile and bending stresses to some degree are 

needed. Modern shells need to take full advantage of 

today’s design environment and balance engineering 

knowledge with visual expression.

21.2 Shape design of free-curved 
RC shells

One clear example of an engineering shell design 

method approach that makes the best use of today’s 

structural design environment is the shape design 

method of free-curved RC shells, which uses sensi-

tivity analysis (Sasaki, 2005). The principle of the 

method is very simple: the rational shell shape is 

determined, with the help of computer technology, by 

minimizing strain energy (especially bending strain 

energy) in the shell (Ebata et al., 2003). In a sense, 

this shape-defining method uses the same processes 

as physical model experiments, but substitutes those 

processes with numerical algorithms.

The hanging membrane inverted to form a 

membrane shell by Heinz Isler (Fig. 20.13) is an 

expansion of Antoni Gaudí’s inverted hanging arches 

(Fig. 4.6) to curved surfaces. The curved surfaces 

obtained by this method are free-curved surfaces, 

shaped only by the force of gravity. The well-known 

technique realizes optimal shell shapes with only 

compressive stresses acting under self-weight. The 

numerical shape analysis determines these shapes 

exactly and also does not require a craftsman’s skill 

and time. The proposed method is effective as a 

modern design tool for the initial phase of a prelim-

inary design.

Generally, shape generation is formulated as an 

optimization problem. These nonlinear problems can 

be divided into two problems: the local optimum 

solution problem and the global optimum solution 

problem. The sensitivity analysis method I adopted 

is a typical method suitable to search local optimum 

solutions. From a structural viewpoint, it is desirable 

to find a local optimum solution that is as close 

as possible to the initially conceived shape. This 

objective is quite intuitive, since in real architectural 

and structural design, the first thing that comes across 

one’s mind is the desired image of a shape. However, 

imagined shapes are often not capable to carry loads to 

the foundation – these shapes will require theoretical 

modifications. By establishing an initial digital shape 

from the imagined curved surface in a study model, 

and then seeking an engineered shape close to the 

initial imagined shape, a structurally optimal form 

with minimum strain energy can be found with 

minimal modifications. In technical terms, for each 

node the gradient of the strain energy with respect to 

change in the vertical coordinate z is computed. The 

value of z is revised in the direction that will reduce 

the strain energy. The new strain energy is computed 

in FE analysis, and the procedure continues until 

there is no appreciable change in the strain energy 

after an iteration.

Using the method as a modification tool generally 

yields structurally complex curved forms that satisfy 

both architectural and structural constraints. The 

analysis starts from an initial shape in which architec-

tural boundary conditions are accounted for. Therefore, 

the method is expected to work effectively as a 

practical tool in the preliminary design. Solutions of 

the sensitivity analysis depend heavily on the choice of 

the initial shapes. A comprehensive study is crucial to 

expand the designs by preparing multiple candidates 

for the initial forms. Additionally, to achieve a high 

design density, it is important to have a feedback 

loop until an architecturally and structurally satisfying 

shape is obtained. This loop allows for a compre-

hensive investigation of the acquired solution shapes, 

and if it becomes necessary, allows for re-establishing 

the initial shape and conducting the shape analysis 

literately. In either case, the ability to define in a 

short time desired free structural shapes, specifically 

at the preliminary design phase, is the advantage of 

this method, and it enables the design of modern RC 

shells.

Since 2000, several contemporary free-curved RC 

shells have been designed and realized worldwide, 
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using a theoretical shape design method called flux 

structure. While the geometry changed from an 

analytical surface to a free-curved surface, the design 

concept still strives for structural rationalism and 

expression of beauty. As of 2011, ten years after the 

original idea, five structural designs of free-curved 

RC shells have been realized through collaboration 

with architects including Arata Isozaki, Toyo Ito and 

SANAA (Kazuyo Sejima + Ryue Nishizawa). Table 

21.1 and Figures 21.3–21.7 give more information 

about these works.

21.3 Teshima Art Museum

Using the most recent design, the Teshima Art 

Museum (see page 258), as a case study, this section 

details the structural design method of free-curved 

RC shells. Our focus lies on the structural planning 

(shape design), structural designing (stability study) 

and preliminary design planning (precision control) 

that characterize the structural design of the museum’s 

shell roof. The main building of the Teshima Art 

Museum (Fig. 21.7) is a single-storey art gallery with 

an irregular elliptical footprint spanning 60m in its 

longitudinal direction and 43m in the other direction. 

The roof is a three-dimensional free-curved RC shell 

(with a maximum rise of 5.12m and a thickness 

25cm). The roof has two openings, and the interior 

of the shell is a single, semi-covered exhibition hall. 

The shell’s finish is architectural concrete. The main 

building itself is a part of the museum’s art collection. 

Figure 21.8 show cross sections, plans and details of 

the reinforcement.

21.3.1 Structural planning

The concept of the roof is a ‘water drop’. Based on this 

notion, the architect gave the roof its original curved-

surface shape. Unfortunately, the original shape had 

little structural rationality. Without changing the 

image of the original shape, the curved surface was 

Project, location Design phase, construction phase 
(MM/YYYY)

 Architect Area
(m2)

Span
(m)

Thickness
(cm)

Kitagata Community Centre, Gifu, 
Japan

05/2001–03/2004, 01/2004–10/2005 Arata Isozaki 4,495 25 15

The Island City Park ‘Gringrin’, 
Fukuoka, Japan

10/2002–11/2003, 03/2004–05/2005 Toyo Ito 5,040 70 40

Kakamigahara Crematorium, Gifu, 
Japan

05/2004–03/2005, 04/2005–05/2006 Toyo Ito 2,265 20 20

Rolex Learning Centre, Lausanne, 
Switzerland

01/2005–12/2009, 01/2007–11/2009 SANAA 39,000 80 40–80

Teshima Art Museum, Kagawa, Japan 09/2008–08/2009, 10/2009–07/2010 Ryue Nishizawa 2,040 43 25

Table 21.1 List of free-curved RC shells

Figure 21.3 Kitagata Community Centre, Gifu, Japan, 2005
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modified, and then proper structural planning was 

initiated. The shape design method used sensitivity 

analysis to generate the structurally rational shape for 

the curved surface. This method captures the curved 

shape in the form of Non-Uniform Rational Basis 

Splines (NURBS), which reduces the number of 

unknown quantities whilst preserving a shape with a 

high level of freedom. Minimizing the strain energy 

across the whole shell surface under self-weight as 

an objective function and the coordinates of the 

NURBS control nodes as design variables, the surface 

shape is formulated as an optimization problem and 

solved by the gradient descent method to obtain 

a shell shape close to the architect’s vision and 

with minimal strain energy. This approach generates 

a curved-surface shape with reasonable structural 

rationality while maintaining the architect’s image 

and satisfying programmatic and visual requirements. 

The structure’s layout is shown in Figure 21.9a.

The shell has a thickness of 25cm and a maximum 

rise of 5.12m. The results of the roof ’s shell shape 

derived from the shape design method are presented 

in Figure 21.9. Figure 21.9d shows the history of 

the total strain energy and the maximum vertical 

displacement under self-weight. Figure 21.9e is the 

change between the initial and the final shapes, and 

the distributions of vertical displacements throughout 

the evolution process are shown in Figure 21.10. 

Figures 21.9d and 21.10 show that the total strain 

energy and the vertical displacements get smaller 

throughout the process. Figure 21.9e shows the 

maximum displacement between the initial and the 

final shapes as approximately 400mm. According to 

these results, a rational shell shape is obtained without 

losing the original image of the curved surface.

21.3.2 Structural design

We skip the details about the general structural analysis 

(static stress and earthquake response analysis) of the 

Figure 21.4 Island City Park ‘Gringrin’, Fukuoka, 2005 Figure 21.5 Kakamigahara Crematorium, Gifu, 2006
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shell because these analyses are conducted according 

to the Japanese code. Instead, we focus on the stability 

of the shell, which is specific to this structural design.

Specification of the safety factor

The stability evaluation formulae are defined as follows 

for static load and earthquake load respectively:

  P 
cr
  ≥ P 

L
  (21.1)

  P 
cr
  ≥  P 

L
  + P 

E
  (21.2)

Herein,  P 
cr
  is the buckling load defined by the factors 

explained next, and ,  P 
L
  and  P 

E
  are, respectively, a 

safety factor, the static load to the shell, and the 

earthquake load, which rarely occurs. The value of  P 
cr
  

is defined by:

Figure 21.6 Rolex Learning Centre, Lausanne, 2010

concrete creep;

cracks and rebar arrangements in concrete;

initial imperfections;

differences between the designed value and the 

construction of the shell thickness;

eccentricity of the acting point of the resultant 

stress;

plastification effect of concrete.

In a stability analysis, the computation of the buckling 

load of the shell,  P 
cr
 , and the specification method of the 

safety factor are of great importance. The safety factor 

 is judged and defined comprehensively in two ways: 

the IASS recommendation for buckling of reinforced-

concrete shells (Dulácska, 1981), and the limit state 

design method. We will not discuss the details closely 

here, but in this design, it has been confirmed that 

setting the safety factor to = 3.0 provides enough 

safety for both stationary and short-term load.

Figure 21.7 Teshima Art Museum, Kagawa, 2010
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Design load

Since the nonlinear buckling analysis by incremental 

analysis is used for the seismic stability analysis, the 

seismic force is applied as an equivalent static seismic 

force. Because of the shape in plan of the shell, calcu-

lating the static seismic force with natural mode 

analysis is too complicated. For that reason, the distri-

bution of absolute acceleration response at the time 

when the focused response value shows the maximum 

in the time history response analysis is employed to 

calculate the static seismic force. Figure 21.11 shows 

the seismic intensity distributions of the static seismic 

force, which is the most important factor obtained for 

conducting a stability analysis.

Nonlinear stability analysis

Two numerical analysis methods, an abbreviated 

calculation method based on the IASS recommen-

dation for buckling and an exact calculation method 

by complex nonlinear incremental analysis, are used 

to compute the buckling load considering plastic 

deformation  P 
cr
 . From the abbreviated method in 
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(a)

(b)

D16-150mm
D13&D16-75mm

4
2
7
3
8

4
2
.7

m
5
.1

2
m

60.2m

1800

5
0
0

Figure 21.8 Arrangement of reinforcement, cross sections, 
and structural details of (a) the connection of the shell to the 
foundations, and (b) the edges of the openings in the shell
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1. Assuming a construction tolerance of 5mm, define 

the thickness of the shell as 245mm.

2. Reinforced concrete is modelled as a monolithic 

material (reinforcements and concrete are not 

modelled separately).

3. The shell is divided into five layers over its thickness 

so that the plastic region progresses into the cross 

section.

4. 20mm of the maximum construction tolerance 

is assumed as the initial shape imperfection for 

stationary loading.

5. Imperfections by construction error and deforma-

tions under stationary load, including creep, are 

assumed as the initial shape imperfections for 

short-term loading.

General descriptions such as the material properties of 

reinforced concrete and yield curves are omitted here. 

Figure 21.12 shows the load-displacement curves at 

the maximally displaced points by static and short-

term loading. In Figure 21.12a, a decrease in the 

load-bearing capacity related to geometric nonlin-

earities shows a major effect, and the shell is thought 

to collapse due to buckling phenomena and additional 

stress from large displacements. For the short-term 

loading, as plotted in Figure 21.12b, the rate of a 

decrease in the bearing capacity related to material 

nonlinearity is larger compared with geometric 

nonlinearity. The maximum compressive strain at the 

maximum bearing force gets up to 0.3%, which is 

almost equal to the ultimate strain value. As indicated 

in Figure 21.12, buckling loads in the static loading 

and short-term loading cases are  P 
cr
  = 5.77 P 

L
  and  P 

cr
  =  

P 
L
  + 3.20 P 

E
 , respectively.

initial shape final shape

-8mm 0 +2mm

Figure 21.10 Distribution of vertical displacements through process

0.41 0.1 00.20.31

1.31 -0.63 -1.280.020.66

Figure 21.11 Seismic intensity distributions of static seismic 
force in horizontal and vertical direction

the IASS recommendation (the rest of the details 

are omitted), the buckling load by stationary loading,  

P 
cr
  = 5.23 P 

L
 , and the buckling load by short-term 

loading,  P 
cr
  =  P 

L
  + 3.14 P 

E
 , are derived. Hereafter, the 

exact calculation method by complex nonlinear 

analysis is described.

The buckling load is computed by the nonlinear 

incremental analysis, taking into account concrete 

creep, geometric nonlinearity and material nonlin-

earity. The overview of the modelling is as follows:
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Validation of stability

Both buckling loads, obtained by the IASS recom-

mendation, denoted by (I), and the complex nonlinear 

analysis, denoted by (II), respectively, satisfy the 

stability evaluation formula for static load (21.1),

  P 
cr
  = 5.23 P 

L
  ≥ 3.0 P 

L
  (I) (21.3)

  P 
cr
  = 5.77 P 

L
  ≥ 3.0 P 

L
  (II) (21.4)

and earthquake load (short-term loading) according 

to equation (21.2),

  P 
cr
  =  P 

L
  + 3.14 P 

E
  ≥  P 

L
  + 3.0 P 

E
  (I) (21.5)

  P 
cr
  =  P 

L
  + 3.20 P 

E
  ≥  P 

L
  + 3.0 P 

E
  (II) (21.6)

Therefore, this shell has sufficient stability for static 

and earthquake loads. In addition, in both loading 

cases, buckling loads required by the IASS recom-

mendation and the complex nonlinear analysis are in 

good agreement with each other.

21.3.3 Preliminary design planning

The shell’s interior finish is architectural concrete, 

a smooth surface without traces of the formwork, 

seams or mould joints. Additionally, errors of concrete 

pouring were targeted to ±5mm for shell thickness and 

±10mm for shell shape as objectives of construction 

quality control; hence, a precise construction control 

was required. Satisfying these two requirements was 

believed to be problematic with the use of conventional 

moulded slab formwork. Instead, an earth-fill concrete 

laying method was used. The shell was cast on an earth 

mound for support. The earth-fill was coated with 

mortar to produce a mould for a three-dimensional 

free-curved surface. All quality control targets were 

achieved with this method. The construction scheme 

is shown in Figure 21.13, and some construction 

scenes are shown in Figures 21.14 to 21.16.

21.4 Conclusion

In this chapter we focused on the holistic structural 

design of contemporary shells using design examples 

displacement (mm)
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maximum strength 3.20
maximum strength 5.77
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Figure 21.12 Load-displacement curves for static and short-term loading

(a) (b) (c) (d)(b)

Figure 21.13 Construction scheme using an earth mound as formwork, with (a) a ventilation duct, (b) openings in the shell, (c) 
conveyor belt for transporting soil and (d) rough terrain crane for further soil removal
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a sensitivity analysis to obtain a free-curved form. 

By comparing their structural behaviour, interesting 

findings are obtained. The whole factory consists 

of six intersecting HP shells that have about 30m 

square planes. In this study, a single bay is analysed 

as the base unit of the building. Figure 21.17a 

shows the initial shape (HP surface). The shell has 

a global thickness of 40mm. The diagonal ribs vary 

in thickness from 140mm to 331mm. Only a quarter 

of the shell is analysed due to symmetry. Each corner 

has a pinned support. Self-weight and uniformly 

distributed load are applied as the load condition. 

Conditions such as volume, thickness (40–331mm), 

and height constraints, the final shape (free-curved 

surface), shown in Figure 21.17b, are obtained by 

applying the sensitivity analysis to minimize the 

evaluation function, strain energy, for two variables: 

shape and thickness.

From Figure 21.17a, the height has changed 

slightly (about 5cm) at the end of the free edge, but 

significant changes to the original HP shell are not 

Figure 21.14 Formation of the earth-filled formwork

Figure 21.15 Shape measurement of the formwork

Figure 21.16 Concrete placement

and methods. This included the shape design method 

for preliminary design planning, five examples of real 

works in which the method was applied, and discus-

sions of the respective structural design methods.

To conclude, we turn to Candela’s Bacardi Rum 

Factory. Taking its original hyperbolic parabolic shell 

(a geometric shape) as the initial form, we conduct 
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Figure 21.17 Distribution of shell thickness for the (a) initial 
shape (HP surface) with a range of 40–331mm, and (b) for the 
final shape (free-curved surface) with a range of 40–281mm
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evident. These results show that the initial shape itself 

has strong structural rationality, and the sensitivity 

analysis method is a suitable method to search for 

the local optimal solution. However, as can be seen in 

Figure 21.17, the thicknesses of the two shapes show 

remarkable differences. In order to form plane and 

smooth membrane stress distributions over the entire 

shell, the diagonal ribs in the initial shape have disap-

peared, and the thickness of the shell has changed as if 

to reduce the self-weight of the top part. Only around 

the point supports it becomes thicker to carry concen-

trated stresses. The obtained shape is very natural 

when the load is limited to the gravitational forces 

and indicates that crossing arches seen in traditional 

intersecting shells are not necessarily needed.

In addition to the slight changes in the appearance, 

such as the curved surface shape and the distribution 
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Figure 21.18 Membrane stress, bending stress, and deformation of the initial shape, for the (a) HP surface and (b) final 
free-curved shape

 strain energy 
(kNm)

 
m, max 

  
(kNm-2)

 
b, max 

  
(kNm-2)

 
m,mean

  
(kNm-2)

 
b,mean

  
(kNm-2)

 
 max 

  
(mm)

Initial 1.0821 3,137.3 1,596.1 494.5 467.3 9.88 

Final 0.3641 1,982.9   499.4 467.7 132.7 4.63 

Table 21.2 Structural responses for initial (HP) and final (free-curved) surface, membrane stress   
m
 , bending stress   

b
 , vertical 

displacement 

of thickness, as illustrated in Figure 21.18, consid-

erable differences are observed in the distribution of 

principal stresses and displacements. Table 21.2 shows 

several structural response values of the two shapes.

These results show that by optimizing the shape 

and thickness of the initial shape (HP surface) to 

achieve minimum strain energy, the distribution of 

principal stresses and displacements of the final shape 

(free-curved surface) are improved. Needless to say, it 

does not mean the free-curved surface shape is struc-

turally superior. Only gravity forces are considered to 

obtain the final form. The shape is also optimized for 

a plane membrane stress state. The initial form, which 

resists bending moment partly through the use of ribs, 

is more successful in resisting other types of load cases 

such as earthquakes. These also show that a change 

in shape or section can improve strain distributions. 
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Conversely, a small construction error can cause corre-

sponding large defections.

The structural design of conventional free-curved 

RC shells relies not only on optimization techniques 

to arrive at a structurally rational solution, but also 

requires a holistic approach that uses modern design 

methods and encompasses all basic designs, detailed 

designs and construction works.
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CONCLUSION

The congeniality of architecture 
and engineering
The future potential and relevance of shell structures in 
architecture

Patrik Schumacher

My interest in shell structures is part and parcel 

of a more general interest in advanced structural 

engineering and its capacity to handle, shape and 

exploit complex, differentiated geometries via relative 

optimization strategies. In structural engineering 

research – in the tradition pioneered by Frei Otto 

– I find an exciting coincidence of pursuits that is 

congenial to my architectural striving for a richly 

differentiated and clearly articulated architectural 

order. The emerging style that I try to contribute 

to and promote builds upon recent advances in 

engineering and needs the congenial contribution of 

sophisticated, creative engineers to achieve its global 

ambitions (Schumacher, 2009, 2012).

The premise of my contribution here is a double 

thesis that implies both the strictest demarcation 

and the closest collaboration between architecture 

and engineering as preconditions for the productive 

advancement of the built environment. The under-

lying division of labour might be posited as follows: 

architecture is responsible for the built environment’s 

social performance. Engineering is responsible for the 

built environment’s technical performance. Technical 

performance is a basic precondition of social perfor-

mance. In this sense engineering might be argued to 

be primary. Social performance is the goal. In this 

sense architecture might be argued to be primary. Thus 

the relation cannot be brought into a hierarchy. Rather 

it is a relation of mutual dependency and dialectical 

advancement. Architectural goals must be defined 

within a technically delimited space of possibilities. 

Engineering research and development thus expands 

the universe of possibilities that constrains archi-

tectural invention. However, it cannot be taken for 

granted that engineering research and development 

expands the universe of possibilities in relevant, 

desired directions without being prompted and 

inspired by architectural goals. In turn, architectural 

goals and inventions might be prompted and inspired 

by recent engineering advances. The two disciplines 

co-evolve in mutual adaptation. Although there can 

be no doubt that architecture remains a discourse 

that is distinct from engineering, a close collabo-

ration with the engineering discipline’s as well as the 

architect’s acquisition of reliable intuitions about their 

respective logics are increasingly important conditions 

for the design of contemporary high-performance 

built environments.

Shell structures are among my favourite devices to 

differentiate and articulate spatial compositions. The 

convex curvature of the shells makes spatial units easily 

recognizable and traceable, even if such spatial units 

proliferate and interpenetrate in complex arrangements. 

While intersecting rectangles soon produce an undeci-

pherable cacophony of corners, intersecting shells 

remain perceptually tractable. Their size is indicated 

by their height, and locally by the degree of curvature. 

While straight walls are mute with respect to whether 
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one is inside or outside of a certain territory, in the 

case of shells the distinction of concave and convex 

clarifies one’s relation to the spatial unit in question. 

Thus shell configurations are in many ways conducive 

to the ordered, legible build-up of organizational 

complexity. Shape-optimized shell configurations are 

inherently information-rich artefacts that give clues 

allowing for local-to-global inferences as well as for 

Figure 22.1 Field of Domes, exterior view of the commissioned design, 2012, by Zaha Hadid Architects

Figure 22.2 Banquette Hall, interior view of the commissioned design, 2012, by Zaha Hadid Architects
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local-to-local inferences. This is a direct consequence 

of the calculative information processing that has 

generated their final form.

In my design work I am now trying more and more 

to move away from the freeform play with complex 

curvature towards the disciplined use of structural 

form-finding algorithms. The increased computa-

tional power to handle complex formations makes 

this possible. The lightness that can be achieved with 

structural optimization in general and with shells in 

particular is a much appreciated factor here. However, 

the fact that I prefer a structurally constrained search-

space to an unconstrained one is not only motivated 

by technical efficiency considerations or by the 

achievement of relative lightness. What motivates me 

here as well is the morphological coherence that comes 

with rule-based or law-governed design logics. This 

allows me to give a unifying character to a morpho-

logical world I choose for a particular project or part 

of a project. These unifying rules give a character and 

identity that remains recognizable despite the rich 

differentiation that remains available within these 

logics. I am not only talking about the overall spatial 

forms here but also include sub-articulations such as 

grids (gridshells), ribs (ribbed vaults), perforations and 

tessellations. All these sub-articulations are driven by 

scripted rules that include structural logics, fabrication 

logics or environmental logics. Here, the collaboration 

between engineering and design (tectonic articu-

lation) takes the form of feeding data that come from 

engineering simulations into geometric responses that 

serve as articulating patterns, that then deliver further 

character enhancements and orienting information. 

The rule-based form-production that computes results 

from multi-variable inputs in turn allows – at least in 

principle – for inferences to be drawn in the inverse 

direction: from the resultant output variables to the 

input variables. An intuitive grasp of the embodied 

logic of such rule-based spatial formations gives 

users a sense of orientation and successful, intuitive 

navigation.

It is this search for coincidences between technical 

and communicative morphologies where the key 

project of tectonic articulation resides.

Why is this important? The ability to navigate dense 

and complex urban environments is an important 

aspect of our overall productivity today. Post-Fordist 

network society demands that we keep continuously 

connected and informed. We cannot afford to beaver 

away in isolation when innovation accelerates all 

around. In order to remain relevant and productive 

we need to network all the time and coordinate our 

efforts with what everybody else is doing. Everything 

must communicate with everything. The speed and 

confidence with which one can make new experi-

ences and meaningful connections is decisive. The 

design of environments that facilitate such hyper-

connectivity must be very dense and complex and yet 

highly ordered and legible. As urban complexity and 

density increase, effective articulation becomes more 

important. Computational techniques and attendant 

formal–spatial repertoire are maturing, allowing us to 

build up and order unprecedented levels of spatial and 

morphological complexity.
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APPENDIX A

The finite element method in a 
nutshell
Chris Williams

The finite element method approximates a continuum 

with a finite number of finite-sized elements. The 

larger the number of elements, the more accurate 

the result, unless there are so many elements that 

numerical errors build up. The elements can have any 

number of sides or faces: triangles, quadrilaterals and 

so on in two dimensions, and usually tetrahedra or 

hexahedra in three dimensions. A cube is an example 

of a hexahedron, a polyhedron with six faces.

Shells are represented by two-dimensional surface 

elements in three dimensions using curved triangles 

or quadrilaterals. A gridshell might be modelled with 

one-dimensional line or ‘beam’ elements.

Adjacent elements share nodes. For example, each 

triangle in Figure A.1 has six nodes and each pair 

of neighbouring triangles share three nodes. This is 

sufficient for the elements to fit together with no gaps 

along their curved edges. However, for the bending 

theory of plates and shells we not only want the 

elements to fit together, but we also want there to be 

no kinks or folds between the elements.

This is exactly the problem solved in computer-

aided design by using techniques such as biquadratic 

or bicubic B-splines, NURBS or subdivision surfaces, 

and these methods are now being employed in the 

finite element method as an alternative to the more 

traditional plate and shell elements.

Triangular elements might just have three nodes, 

one at each corner, in which case the triangle is flat 

with straight sides. Alternatively one might have more 

than six nodes, ten would be the next obvious number, 

one more on each edge and one in the middle, away 

from all the edges. Sometimes nodes can ‘merge’, in 

which case they can specify not just a position, but 

also an orientation; for example, to define the tangent 

plane to a surface. There are advantages and disadvan-

tages in including orientations, and therefore rotations, 

in a finite element analysis of a shell. Rotations have 

to be included to transfer moment between a shell and 

its supports, but buckling may involve large rotations 

which some computer programs do not handle well.

In three dimensions the continuum may be a 

solid or fluid and it may be stationary or moving. 

In fact there is no such thing as a continuum since 

all materials; for example, air, water, steel and sand 

are made from individual molecules or grains. Even 

though there might be the possibility of computer 

modelling every grain of sand in a small sample, this is 

never possible with molecules – one cubic millimetre 

of air contains 300×1015 molecules, way beyond any 

conceivable computer.

The finite element method started with the analysis 

of structures, but has been extended to all sorts of 

problems in engineering and science. The funda-

mental ideas behind the finite element method are 

Figure A.1 Curvilinear triangular elements with six nodes 
per element. Adjacent elements share three nodes
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very simple, but the details are quite complicated so it 

is easily possible to get needlessly confused.

A.1 The virtual work theorem

In structural analysis we have only three types of 

equation:

Equilibrium. Every infinitesimal part of a 

continuum obeys Newton’s second law, F = ma, 

resultant force equals mass times acceleration. In 

statics we have simply F = 0.

Compatibility. The deformation or strain is deter-

mined by the relative displacement of different 

parts of the material.

Constitutive. The stress within a material is deter-

mined by its strain and possibly strain rate, past 

history of strain, temperature and so on. If a ductile 

material has yielded the stress will depend upon 

the past plastic strain.

These three equations can be combined in various 

ways, often using work-like concepts such as strain 

energy, complementary strain energy, virtual work and 

so on. Of these virtual work is perhaps the most useful 

since it does not require the material to be elastic or 

the loads to be associated with a potential such as 

gravitational potential energy.

The virtual work theorem is always the same:

Sum of internal ‘stresses’ times increments of ‘strain’

= sum of external ‘loads’ times increments of 

‘displacements’.

The internal ‘stresses’ include stresses, tensions and 

moments and the corresponding increments of ‘strain’ 

are increments of strain, elongation and curvature. 

External ‘loads’ include applied loads, but also support 

reactions, both forces and moments. Increments of 

‘displacements’ include increments of rotation.

The sums may be replaced by integrals, as 

appropriate.

In dynamics the external ‘loads’ include inertia 

forces acting in the opposite direction to the acceleration.

The virtual work equation is proved starting only 

from the equilibrium equations and the compat-

ibility equations. It therefore always applies, regardless 

of the material properties. Corresponding ‘stress or 

force-like’ and ‘increment of strain or displacement-

like’ quantities are chosen such that their product is a 

‘work-like’ quantity. The proof is very short but rather 

mathematical and involves the use of Green’s theorem 

– essentially multiplying stresses by strain increments 

and then using a sort of ‘integrating by parts’ in three 

dimensions. A version of the proof is given in Section 

A.9.

The internal ‘stresses’ are in equilibrium with the 

external ‘loads’ and they form the equilibrium set.

The increments of ‘strain’ are compatible with the 

increments of the ‘displacements’ and they form 

the compatibility set.

We have, perhaps rather pedantically, always talked of 

‘increments’ of displacement and strain. This is because 

a structure could completely change its shape and 

the virtual work equation would then apply to each 

increment of displacement. In French the virtual work 

principal is called le principe des puissances virtuelles 

(virtual power) which is far more logical because an 

increment of displacement is caused by a velocity 

times an increment of time.

If displacements are small, then we no longer have 

to use increments of displacement, we can use the 

whole displacement.

The reason why virtual work is so useful is that 

there is absolutely no requirement that the equilibrium 

set and the compatibility set exist simultaneously. 

Hence the ‘virtual’. The equilibrium set satisfy the 

equilibrium equations and the compatibility set 

satisfy the compatibility equations, but the equations 

are independent and both apply provided that the 

geometry of the structure is the same – hence the 

increment of displacement.

We have described the use of the equilibrium and 

compatibility equations to prove the virtual work 

theorem; however, the proof can be reversed to use 

virtual work and the compatibility equations to prove the 

equilibrium equations. This is done using the idea that the 

virtual work equation applies for any virtual increment 

of displacement field (or virtual velocity field).

Thus the application of the virtual work theorem to 

the finite element method involves:
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virtual work;

compatibility equations;

constitutive equations.

The equilibrium equations are not used at all.

Perhaps the most confusing aspect of the finite 

element method is that similar and sometimes 

identical formulations can be obtained using other 

techniques, in particular Galerkin’s method (Boris 

Galerkin, 1871–1945), which does use a weighted 

form of the equilibrium equations, and also Lagrangian 

mechanics which avoid the equilibrium equations in a 

similar way to virtual work, but use ‘real’ kinetic energy, 

strain energy and gravitational potential energy.

Again rather confusingly, if one is applying virtual 

work to an elastic material (linear or nonlinear) then 

the stress–strain relationships should be written in 

terms of derivatives of the strain energy.

A.2 Shape functions, degrees 
of freedom and generalized 
coordinates

The finite element method is based upon interpolation 

to define the geometry of the structure at points other 

than the nodes. As we have already noted, this is 

exactly the same problem as in computer-aided design, 

and that is why techniques such as NURBS and subdi-

vision surfaces can be used as finite elements for shells.

The term ‘shape function’ is used for the functions 

that are used for interpolation. The shape functions 

are controlled by the values of the degrees of freedom, 

displacements and rotations for solids. The degrees 

of freedom are associated with the nodes and hence 

adjacent elements share some of their degrees of 

freedom.

It is logical to use the same functions for inter-

polating the displacement of a structure as for 

interpolating its initial shape. Such an approach is 

described as isoparametric.

A.3 Finite element formulation

People usually first learn the finite element method as 

applied to linear elastic structures. They then have to 

‘unlearn’ quite large parts of this to apply the method 

to nonlinear problems such as shell buckling. This is 

very confusing and so we will avoid making the linear 

assumption.

Real structures move with time and each bit of 

the structure will accelerate according to the resultant 

force upon it. However, we will not allow each bit 

of the structure that freedom, we will only allow the 

finite number of degrees of freedom to change with 

time, hence the approximation.

At any given time the degrees of freedom will have 

certain values and hence we can find the current strain 

at all points in the structure using the shape functions. 

We can then use the constitutive relations to find 

the current stress, which may also depend upon the 

current strain rate and the past history of strain.

We can also use the shape functions to find the 

virtual strain increment associated with a virtual 

increment of any one of the degrees of freedom.

We can integrate the real current stress multiplied 

by the virtual strain increment over the elements 

which share the degree of freedom undergoing the 

virtual increment. This gives us the nodal load or 

moment necessary to ‘balance’ the internal stresses. 

There are no real nodal loads or moments, but they are 

a useful concept in evaluating the different contribu-

tions to the virtual work equation.

We can also integrate the real load applied to the 

structure multiplied by the virtual displacements. This 

gives us the ‘actual’ nodal loads.

The difference between an actual nodal load and 

the load required to balance the internal stresses is 

a resultant nodal force or moment which causes the 

structure to accelerate.

If we had included the inertia forces due to accel-

eration in with the real loads, then the resultant would 

be zero; in other words, the virtual work equation 

would be satisfied.

A.4 The mass matrix

So the question now is ‘how can we find the nodal 

accelerations and angular accelerations necessary 

to balance the virtual work equation?’ The simplest 

answer is to assume that the mass of the structure is 

lumped at the nodes, in which case the nodal accel-

eration is just the resultant force divided by the mass. 

For moments and rotations we would have a lumped 

moment of inertia.
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START

LoadsCurrent geometry

Virtual displacement
increment

Virtual strain
increment

Compatibility equations

Current strain

Constitutive equations

Current stress

Virtual work

End simulation

END

Residual nodal forces and
moments

Dynamic relaxation

Nodal and angular
accelerations

Update nodal and
angular velocities

Displacement and
rotation increments

Figure A.2 Flowchart for explicit dynamic analysis of an elastic structure with lumped masses using Verlet integration or 
dynamic relaxation
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However, the mass of a structure is not lumped at 

the nodes and so acceleration at one node contributes 

to the resultant force and moment of its neighbours 

via the shape functions. This effect can be included 

via a ‘consistent’ mass matrix which would have to be 

inverted to find the nodal accelerations. We have used 

virtual work in our discussion; however, if the total 

real kinetic energy is T, then the elements of the mass 

matrix are

  M 
ij
  =    ∂ 2 T

 _____ 
∂   ̇  q  

i
 ∂   ̇  q  

j
 
  , (A.1)

where    ̇  q  
i
  is the rate of change of the degree of freedom  

q 
i
 .

However, the approximation caused by assuming 

lumped masses is small and reduces if the size of the 

elements is reduced and therefore inversion of the 

consistent mass matrix is not necessary.

A.5 Verlet integration

Verlet integration (which is also known by a number 

of other names) is essentially the same as dynamic 

relaxation, the only difference being that Verlet is 

intended for dynamic problems whereas dynamic 

relaxation is more associated with the solution of a 

static problem by considering a damped dynamic 

problem. Thus one might use dynamic relaxation to 

solve the static problem of the buckling of a shell.

They are both explicit methods that step through 

time using the finite element method (or something 

equivalent) to calculate accelerations and hence the 

change in velocity in a certain time interval. The new 

values of the degrees of freedom are then found using 

the new velocities multiplied by the time interval.

A.6 The entire process

Figure A.2 is a flowchart of the entire process for explicit 

dynamic analysis of an elastic structure with lumped 

masses using Verlet integration or dynamic relaxation. 

It can be seen that the compatibility equations and 

the virtual work theorem lie at the core of the process 

and that the equilibrium equations do not appear at all. 

The compatibility equations are needed to calculate 

the current strain and also the virtual strain incre-

ments due to the virtual displacement increments.

The ‘Stress at some initial strain state’ is included 

because the structure may have some initial prestress 

or we might be modelling a soap film in which the 

stress state is independent of strain.

Strains include changes of curvature as well as 

membrane strains and they are both calculated from 

the coefficients of the first and second fundamental 

forms described in Appendix B. Strain (and curvature) 

increments are calculated from increments of the 

coefficients of the first and second fundamental forms. 

Usually we do not need the Christoffel symbols, 

unless we are interested in changes in the in-plane 

(geodesic) curvature of gridshell members. Also 

we do not use Gauss’s Theorema Egregium and 

Peterson–Mainardi–Codazzi equations because we 

are calculating the coefficients of the first and second 

fundamental forms directly from the current nodal 

coordinates and rotations.

It is often not possible to do the integrations 

required for the application of the virtual work theorem 

analytically and instead they are done numerically 

using Gaussian quadrature in which the values at 

Gauss points are weighted and added.

Note that the stiffness matrix (Section A.7) does 

not appear at all in the formulation for nonlinear 

explicit analysis. We shall see in the next section 

that the elastic stiffness matrix involves the second 

derivative of the strain energy (or the equivalent in 

virtual work terms). Explicit analysis only requires 

the equivalent of the first derivative of the strain 

energy, making the whole process much simpler and 

also avoiding the storage and manipulation of large 

matrices.

The more complicated and nonlinear the analysis, 

the more it makes sense to use explicit methods rather 

than implicit methods involving the elastic stiffness 

matrix.

A.7 The elastic stiffness matrix

The stiffness matrix is at the heart of the finite element 

method for linear elastic problems. We are discussing 

it here for completeness, even though explicit methods 

are often preferable.

For a linear elastic structure

 p = Kq, (A.2)
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where q is a column matrix of degrees of freedom, 

p is a column matrix of loads and K is the square 

stiffness matrix. For nonlinear structures the stiffness 

matrix gives the change in loads caused by a change in 

displacements.

The elements of the stiffness matrix are

  K 
ij
  =    ∂ 2 U

 _____ 
∂ q 

i
 ∂ q 

j
 
  , (A.3)

where U is the total strain energy. This equation 

applies for all elastic structures, but for a linear elastic 

structure the elements  K 
ij
  are constant, they do not 

change as the structure deflects.

It makes no difference whether the stiffness matrix 

is derived by considerations of virtual work or strain 

energy, the result is the same.

For nonlinear structures we have to establish 

out-of-balance forces using the first derivatives of 

the strain energy (or virtual work if one prefers) since 

the second derivatives in the stiffness matrix only tell 

us about the changes in the load. We can approach 

static equilibrium bit by bit using an implicit method 

such as Newton–Raphson which requires fewer steps 

than dynamic relaxation, but each step requires more 

computation.

A.8 The geometric stiffness matrix

Geometric stiffness is what gives a violin string its 

resistance to lateral movement. It is called geometric 

stiffness because it depends upon the geometry of a 

structure and the state of stress within it, but not the 

elastic properties of the material.

Compression causes negative geometric stiffness 

and reduction in stability, possibly leading to buckling.

If one makes assumptions about linear behaviour, 

buckling loads can be found using eigenvalue–eigen-

vector analysis. Shell buckling is usually nonlinear so 

eigenvalue techniques are of questionable value and 

may be very unsafe.

Our discussion of shape functions and virtual 

work makes no assumptions of linear behaviour 

and automatically includes the effect of geometric 

stiffness via the change to the virtual work equation 

as the structure changes shape. Thus one could 

derive the linear eigenvalue buckling equations from 

the fully nonlinear equations, but there does not 

seem much point. Similarly there does not seem 

much point in starting with linear equations and 

then struggling to add in nonlinear bits as best one 

can.

A.9 Proof of the virtual work 
theorem

The following proof is in two dimensions. The three-

dimensional version is identical, it just has more terms. 

We start with the compatibility equations. u and v are 

increments of displacement and   
x
 ,   

y
  and   

xy
  are incre-

ments of strain. It would be better to follow the French, 

in which case u and v would be velocities and   
x
 ,   

y
  

and   
xy

  would be strain rates. Either way the compat-

ibility equations are

   
x
  =   ∂u

 __ 
∂x

   (A.4)

   
y
  =   ∂v

 __ 
∂y

   (A.5)

   
xy

  =   
yx

  =   1 __ 
2
   (   ∂v

 __ 
∂x

   +   ∂u
 __ 

∂y
   )  (A.6)

   
xy

  = −  
yx

  =   1 __ 
2
   (   ∂v

 __ 
∂x

   −   ∂u
 __ 

∂y
   ) . (A.7)

Note the 1/2 in equations (A.6) in the definition of 

the increment of shear strain   
xy

 . This is the ‘mathe-

matical’ definition of increment of shear strain, the 

‘engineering’ definition does not have the 1/2. Many 

formulae are more logical using the mathematical 

definition. The engineering equivalent of  (   
xy

   
xy

  +  

 
yx

   
yx

  )  is   
xy

   
xy

 . The variable   
xy

  is the increment of 

average rotation about the z axis, or vorticity if one is 

using velocities.

The equilibrium equations are

   
∂  

x
 
 ___ 

∂x
   +   

∂  
yx

 
 ___ 

∂y
   +  p 

x
  = 0 (A.8)

   
∂  

xy
 
 ___ 

∂x
   +   

∂  
y
 
 ___ 

∂y
   +  p 

y
  = 0 (A.9)

   
xy

  =   
yx

  (A.10)

in which  p 
x
  and  p 

y
  are the body forces per unit area, 

including self-weight and inertia forces.

We now need to do a bit of manipulation using 

both the compatibility equations and the equilibrium 

equations:
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x
   

x
  +   

xy
   

xy
  +   

yx
   

yx
  +   

y
   

y
 

 =   
x
   

x
  +   

xy
  (   

xy
  +   

xy
  )  +   

yx
  (   

yx
  +   

yx
  )  +   

y
   

y
 

 =   
x
   ∂u

 __ 
∂x

   +   
xy

   ∂v
 __ 

∂x
   +   

yx
   ∂u

 __ 
∂y

   +   
y
   ∂v

 __ 
∂y

  

 =   ∂ __ 
∂x

   (   
x
 u +   

xy
 v )  +   ∂ __ 

∂y
   (   

y
 v +   

yx
 u ) 

 −  (   ∂  
x
 
 ___ 

∂x
   +   

∂  
yx

 
 ___ 

∂y
   ) u −  (   ∂  

xy
 
 ___ 

∂x
  v −   

∂  
y
 
 ___ 

∂y
   ) v

 =   ∂ __ 
∂x

   (   
x
 u +   

xy
 v )  +   ∂ __ 

∂y
   (   

y
 v +   

yx
 u )  +  p 

x
 u +  p 

y
 v. (A.11)

If we integrate over an area A, we have

  ∫ 
A

   

 

     (   
x
   

x
  +   

xy
   

xy
  +   

yx
   

yx
  +   

y
   

y
  ) dA

 = ∮ 
∂A

   

 

     (   
x
 u +   

xy
 v ) dy +  ∮ 

∂A

   

 

     (   
y
 v +   

yx
 u ) dx

 +  ∫ 
A

   

 

     (  p 
x
 u +  p 

y
 v ) dA, (A.12)

which is the virtual work equation. We have used 

Green’s theorem (much the same as integration by 

parts) to obtain the boundary integrals

  ∮ 
∂A

   

 

     (   
x
 u +   

xy
 v ) dy +  ∮ 

∂A

   

 

     (   
y
 v +   

yx
 u ) dx, (A.13)

which is the increment of virtual work done by the 

stresses applied to the boundary. The increment of 

virtual work done by the body forces is

  ∫ 
A

   

 

     (  p 
x
 u +  p 

y
 v ) dA. (A.14)

Note that we could run the proof backwards to prove 

the equilibrium equations starting from virtual work 

and the compatibility equations. To do this we have to 

note that the equations apply for any virtual increment 

of displacement field.

Further reading

History of Strength of Materials, Timoshenko (1953). 

This book is too early to include the finite element 

method, but it is of interest in showing how the 

theory developed up to the introduction of the 

finite element method, including virtual work and 

Castigliano’s theorems. It does, however, include 

the finite difference and Rayleigh–Ritz methods 

which are precursors of the finite element method.

‘Some historic comments on finite elements’, Oden 

(1987). This paper gives a fascinating historical 

account of the development of the finite element 

method.
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APPENDIX B

Differential geometry and shell 
theory
Chris Williams

Differential geometry is the study of curved things 

– lines, surfaces and space-time curved by mass and 

stress to produce gravity. The question is whether a 

person who is designing a curved object will benefit 

from knowing anything about the theory of their 

geometry. In truth, most shell structures are designed 

by people who know nothing about geometry and 

they are still perfectly good, safe structures.

However, there are times when geometric insight 

may add something to a design, perhaps to use a 

geodesic coordinate system for a pattern of stones in a 

vault or for the fabric’s cutting pattern of a tent structure.

The following is a brief introduction to all the 

important aspects of differential geometry, as far as 

shell structures are concerned. It is relatively short so 

that the reader can see that learning the subject is not 

an insuperable task. There are many excellent books 

on the subject, but some of the more mathematical 

and abstract ones are difficult. Here, we have used 

tensor notation as in Green and Zerna (1968), mainly 

because the tensor notation is ideal for writing struc-

tural equations as well as geometric relationships. 

‘Elementary’ books, such as those by Struik (1988) 

and Eisenhart (1909), are more accessible because 

they do not use tensors, but they do not make the 

connection to shell theory as Green and Zerna do. 

The tensor notation is indispensible for the general 

theory of relativity, and Dirac (1975) is only sixty-

nine pages long. Shell theory and the general theory 

of relativity are closely linked because they are both 

concerned with curvature and stress. Mass curves 

space-time through the stress–energy–momentum 

tensor, which has four principal values, density and 

the three principal stresses. Force is non-dimensional 

in the general theory, which means that there is an 

absolute measure of force, not relying on arbitrary 

units such as kilogrammes, metres and seconds.

A general surface can be written in parametric 

form as

 r ( u,v )  = x ( u,v ) i + y ( u,v ) j + z ( u,v ) k, (B.1)

in which u and v are surface parameters or surface 

coordinates, r is a position vector i, j and k are unit 

vectors in the directions of the Cartesian x, y, z axes. 

Thus, for example, the sphere  x 2  +   y 2  +  z 2  =  R 2  can be 

written as

 x = R cos u cos v, (B.2)

 y = R sin u cos v, (B.3)

 z = R sin v. (B.4)

In the case of the Earth, u would be the longitude 

and v the latitude. Clearly it is easier to specify where 

we are using latitude and longitude plus height rather 

than Cartesian coordinates with the origin at the 

centre of the Earth.

We noted in Appendix A that the finite element 

method starts with the geometric problem of interpo-

lation between the nodes. Each finite element would 

have its own set of equations relating x, y and z to 

u and v. The elements need continuity along their 

edges and providing continuity of slope is rather 

tricky. In the parlance of computer-aided design, shell 
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elements would be described as ‘surface patches’. One 

could argue that it is rather inelegant to represent a 

surface by a patchwork of elements, and if possible 

one would use one mathematical description for the 

whole surface.

The same surface (or element or patch) can be 

represented in different parametric forms. Thus

 r = a cos u cosh vi + b sin u cosh vj + c sinh vk (B.5)

and

r = a cos  ( u − v )  sec  ( u + v ) i

  + b sin  ( u − v )  sec  ( u + v ) j + c tan  ( u + v ) k (B.6)

are two different parametric forms for the hyperboloid 

of one sheet (cooling tower shape)

    x  2 
 __ 

 a  2 
   +   

 y  2 
 __ 

 b  2 
   −    z  2 

 __ 
 c  2 

   = 1. (B.7)

Many books use the parameters u and v, but there 

are compelling reasons (which will gradually become 

apparent) for using parameters with superscripts, say  

u 1  and  u 2 , or    1  and    2 , or even  x 1  and  x 2 . We will 

use    1  and    2 , and must note that    1  and    2  are two 

separate parameters replacing u and v, and not  to the 

power 1 and  squared.

Thus the general surface is written

 r (    1 ,   2  )  = x (    1 ,   2  ) i + y (    1 ,   2  ) j + z(   1 ,   2 )k (B.8)

The equation    2  = constant produces a curve on the 

surface as    1  is varied. Varying the value of the 

constant will produce a family of curves. Similarly,    1  

will produce a second family, giving a net over the 

surface, as shown in Figure B.1.

In general, the curves forming the net will not cross 

at right angles and the distances between the intersec-

tions will not be constant. We could imagine drawing 

a net or grid of squares on a flat sheet of rubber 

and then stretching and bending the sheet to lie on 

our general surface. In so doing, the squares would 

become deformed so that the lengths and angles vary.

We will use the geometry of the net to inves-

tigate the geometry of the underlying surface. Some 

geometers would say that this is unsatisfactory because 

the surface exists independently of the net. But, the 

net is very useful for defining where we are and for 

specifying lengths and directions – and how directions 

change due to curvature.

What does seem odd is that we do not start by 

specifying a particular surface and the reason for this 

is that we want to find relationships that apply to all 

surfaces. If we want to investigate a particular surface, 

we do that right at the end. ‘Elementary’ books tend 

to start with particular special cases, which does 

sometimes make sense, if one is dealing with a simple 

shape such as a sphere.

B.1  Covariant base vectors and the 
first fundamental form

Figure B.1 also shows a number of vectors, a,  g 
1
 ,  g 

2
 , 

v and n, all at the point A. All of these vectors lie in 

the plane tangent to the surface at A, except n which 

is the unit normal to this plane and therefore to the 

surface. The vector v is the unit vector tangent to the 

curve C and a is the unit vector perpendicular to v 

and n.

Depending upon the application, C might be a real 

curve, perhaps a railway line on the Earth, while the 

lines of latitude and longitude are purely conceptual. 

The curve C can also be specified in parametric form 

as    1  =    1  ( u )  and    2  =    2  ( u )  so that as the parameter u 

varies,    1  and    2  change on the surface and so x, y and 

z vary in three-dimensional Cartesian space.

Let us suppose that u is the value of the parameter 

at A and u + u is the value at B. In Figure B.1, u is 

 1

 2

a

n g
2

g
1

v

O

CB

A

Figure B.1 Differential geometry notation
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finite, but we now have to imagine that u  0 so that 

the straight line AB is tangent to the curve, that is in 

the direction v. Thus v is in the direction of the vector

   dr
 __ 

du
   =   ∂r

 ___ 
∂  1 

     d   1 
 ___ 

du
   +   ∂r

 ___ 
∂  2 

     d  2 
 ___ 

du
  , (B.9)

where the vectors

   ∂r
 ___ 

∂   i 
   =   ∂x

 ___ 
∂  i 

  i +   
∂y

 ___ 
∂  i 

   j +   ∂z
 ___ 

∂  i 
  k, (B.10)

for i = 1 and i = 2. Note the use of both straight (d) and 

curly (∂) ‘d’s in equation (B.9). This because    1  and    2  

are only functions of u along the curve C, whereas r is 

a function of both    1  and    2 .

Because the vectors in equation (B.10) are used 

so much, they are given their own symbols with 

subscripts,

  g 
i
  =   ∂r

 ___ 
∂  i 

  , (B.11)

again for i = 1 and i = 2. They are called the covariant 

base vectors. Green and Zerna (1968) use  a 
i
  and on a 

surface instead of  g 
i
 .

The vector

 dr/du =  ∑ 
i=1

   
2

     (  g 
i
 (d  i /du) )  (B.12)

is tangent to the curve C and  g 
1
  and  g 

2
  are tangent to 

the curves    2  = constant and    1  = constant respectively.

The Einstein summation convention states that an 

index is summed if it is repeated in the same term as a 

subscript and superscript. Thus, we can write

   dr
 __ 

du
   =  g 

i
   d    i 

 ___ 
du

   (B.13)

and infer the  ∑ 
i=1

   
2

     from the repeated i.

In general,  g 
1
  and  g 

2
  will not be unit vectors, and 

neither will  g 
1
  and  g 

2
  be perpendicular to each other. 

If the length AB is equal to s, then

 s 2  = r  r

 =  ∑ 
i=1

   
2

     ∑ 
j=1

   
2

     [  (  g 
i
   i  )    (  g 

j
     j  )  ] 

 =  g 
i
    g 

j
   i     j  =  g 

ij
   i   j , (B.14)

which is known as the first fundamental form (note 

the use of the summation convention). The scalar 

products

  g 
ij
  =  g 

ji
  =  g 

i
    g 

j
  (B.15)

are known as the coefficients of the first fundamental form 

or the components of the metric tensor. Equation (B.14) 

appears in exactly this form in the general theory of 

relativity, the only change is that the implied summations 

are from 0 to 3, corresponding to the four dimensions 

of space-time, and s is now the time elapsed as experi-

enced by observer at event A and subsequently B.

The unit tangent to the curve can now be written

 v =   dr
 __ 

ds
   =   

(  dr
 __ 

du
  )
 ___ 

(  ds
 __ 

du
  )
   =   

  d  i 
 ___ 

du
   g 

i
 
 ________ 

 √
______

  g 
jk
   d  j 

 ___ 
du

  
 
  d  k 

 ___ 
du

    
  . (B.16)

The unit vector

 n =   
 g 

1
  ×  g 

2
 
 _____  √

_
 g     (B.17)

is normal to the surface and therefore also to the curve 

C. The quantity g =  g 
11

  g 
22

  − ( g 
12

  ) 2  is equal to the square 

of the magnitude of the vector product  g 
1
  ×  g 

2
 .

The unit vector a = n × v and a, n and v form a set 

of mutually perpendicular unit vectors.

B.2 The contravariant base vectors

It would seem that we have enough base vectors 

with the covariant base vectors,  g 
1
  and  g 

2
 , tangent 

to the surface and the unit normal to the surface, n. 

Nevertheless, it is very useful to have some more, the 

contravariant base vectors  g 1  and  g 2 , defined by

  g i    g 
j
  =    

j
  i , (B.18)

  g i   n = 0, (B.19)

where the Kronecker delta,    
j
  i  is equal to 1 if i = j and 

0 if i ≠ j.

The product  g 1    g 
2
  = 0 so that the direction of  g 1  

is specified by the fact that it lies in the plane of  g 
1
  

and  g 
2
 , but is perpendicular to  g 

2
 . The magnitude of  

g 1  is then determined by  g 1    g 
1
  = 1. The direction and 

magnitude of  g 2  are determined in a similar way.

The reason for using the two sets of base vectors 

can be seen by considering the vector,
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 p =  p 
x
 i +  p 

y
  j +  p 

z
 k

 =  ∑ 
i=1

   
2

     (  p i  g 
i
  )  + pn =  p i  g 

i
  + pn

 =  ∑ 
i=1

   
2

     (  p 
i
   g i  )  + pn =  p 

i
   g i  + pn, (B.20)

whose components

  p i  = p   g i , (B.21)

  p 
i
  = p   g 

i
 , (B.22)

 p = p  n. (B.23)

Note that we can use either p =  p i  g 
i
  + pn or p =  p 

i
  g i  + pn, 

or sometimes one and sometimes the other, at our 

convenience. But, we need  g i  to find  p i  and  g 
i
  to find  

p 
i
 .

A vector is a first-order tensor and a scalar is a zeroth-

order tensor. In n dimensions an  m th  order tensor will 

have  n m  components. A surface is a two-dimensional 

object (   1  and    2 ) embedded in three-dimensional 

space. This explains why p, the normal component of 

p, does not have a superscript or subscript. Stress and 

strain are second-order tensors and the elastic stiffness 

of a material is a fourth-order tensor. Thus, in three 

dimensions, stress and strain each have 32 = 9 compo-

nents and elastic stiffness has 34 = 9×9 = 81 components. 

However, both stress and strain are symmetric tensors 

(  
xy

  =   
yx

  and so on) and also stiffness has to be the 

second derivative of strain energy with respect to 

strain and therefore we end up with only (6×7)/2 = 21 

elastic constants. For an isotropic material many of 

these are zero and the remainder can be expressed 

in terms of Young’s modulus and Poisson’s ratio. In 

two dimensions, as in the surface of a shell, we have 

only (3×4)/2 = 6 elastic constants, which again can be 

expressed using only Young’s modulus and Poisson’s 

ratio for an isotropic shell.

The scalar products  g ij  =  g i    g  j  are the contravariant 

components of the metric tensor and

 g i  =  ∑ 
j=1

   
2

     (  g ij  g 
j
  )  =  g ij  g 

j
 

  g 
i
  =  g 

ij
   g  j 

  p 
i
  =  g 

ij 
   p  j 

  p i  =  g ij  p 
j
  (B.24)

If we have a second vector, f, the scalar product

f  p =  (   f    i  g 
i
  + f n )    (  p  j  g 

j
  + pn ) 

 =  f  i  p  j  g 
ij
  + fp =  f 

i
   p 

j
   g ij  + fp

 =  f 
i
    p i  + fp =  f    i  p 

i
  + fp (B.25)

Finally,  g ij  g 
jk
  =    

k
  i
   which can be solved to give

 g 11  =   
 g 

22
 
 __ g  ,

  g 12  = −   
 g 

12
 
 __ g  ,

  g 22  =   
 g 

11
 
 __ g  . (B.26)

We can use the contravariant base vectors to find an 

expression for the components of the unit vector a 

lying in the plane of the surface perpendicular to v:

 a =   
ij
  v i  g  j  (B.27)

in which   
11

  = 0,   
22

  = 0 and   
12

  = −  
21

  =  √
_
 g   are the 

components of the Levi-Civita permutation pseudo 

tensor.

B.3  The Christoffel symbols and the 
second fundamental form

We are now going to look at curvature. Returning to 

Figure B.1, v is a unit vector tangent to the curve C 

and

 =   d v
 __ 

ds
   (B.28)

is defined to be the curvature vector of C.

The curvature vector  is perpendicular to v so that 

v  = 0 and the magnitude of  is equal to one over 

the radius of curvature of C.

The curvature vector can be resolved into two 

components, =   
geodesic

  +   
normal

  in which the geodesic 

curvature is the curvature in the local tangent plane to 

the surface and the normal curvature is the curvature 

perpendicular to the surface. A geodesic is a line on the 

surface with zero geodesic curvature and the shortest 

distance between two points on a surface is a geodesic.

We can calculate the magnitude of the curvature by 

differentiating r a second time. A comma is often used 

to denote partial differentiation and thus
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  g 
i,j

  =   
∂ g 

i
 
 ___ 

∂  j 
   =    ∂ 2 r

 _____ 
∂   i ∂   j 

   =  g 
j,i
  =    

ij
  k
    g 

k
  +  b 

ij
 n. (B.29)

The magnitudes of the geodesic and normal curvatures 

are

  |   
geodesic

  |  =   
 (    d 2   i 

 ___ 
d u 2 

   +   d  j 
 ___ 

du
      d   k 

 ___ 
du

     
jk
  i

   )  a 
i
 
  _____________ 

 g 
mn

   d   m 
 ___ 

du
     d  n 

 ___ 
du

  
   (B.30)

and

  |   
normal

  |  =   
 b 

ij
   d   i 

 ___ 
du

     d  j 
 ___ 

du
  
 _______ 

 g 
mn

   d   m 
 ___ 

du
     d  n 

 ___ 
du

  
  . (B.31)

The Christoffel symbols of the first and second kind,   
ijm

  

and    
ij
  k
   ,

 
ijm

  =  g 
m
    g 

i,j
  =   1 __ 

2
   (  g 

im,j
  +  g 

mj,i
  −  g 

ij,m
  ) 

  
ij
  k
   =    

ji
  k
   =  g k    g 

i,j
  = −  g k  

,j
   g =  g km   

ijm
  (B.32)

look like they are components of a tensor, but are 

not because they do not obey the rules for what 

happens when the coordinate system is changed. They 

are essentially properties of the coordinate system, 

describing how it stretches and bends over the surface. 

Tensors and their components describe only real, 

physical things such as stress and the curvature of a 

surface itself, rather than just a coordinate system we 

have drawn upon it.

The quantities,

  b 
ij
  =  b 

ji
  = n   g 

i,j
  = − n 

,j
    g 

i
 , (B.33)

are the components of a symmetric second-order 

tensor since they do represent something real, the 

curvature of the surface which exists independently 

of the particular coordinate system that we put on it.

 n  r =  − b 
ij
    i     j  (B.34)

is known as second fundamental form and therefore  

b 
ij
  are sometimes called the coefficients of the second 

fundamental form. As we move along the curve C 

the change in the normal, n =  − b 
ij
   g i (d    j /du) u. The 

component of n parallel to the curve is due to the 

normal curvature, while the component perpendicular 

to the curve is due to the ‘twist’ of the surface in the 

direction of the tangent.

The second-order symmetric tensor

 b =  b 
ij
   g  i  g  j  (B.35)

behaves like all second-order symmetric tensors, partic-

ularly stress, and thus we have principal curvatures in 

orthogonal directions in the same way that we have 

principal stresses. This is also closely connected with 

eigenvalues and eigenvectors, and the principal curva-

tures are the values of  for which the determinate

⎢ (  b 
11

  −  g 
11

  )   (  b 
12

  −  g 
12

  )  ⎢
⎢ (  b 

21
  − g 

21
  )   (  b 

22
  −  g 

22
  )  ⎢

= 0. (B.36)

Thus

 (  g 
11

  g 
22

  −   (  g 
12

  )  2  )   2  −  (  g 
11

  b 
22

  − 2 g 
12

  b 
12

  +  g 
22

  b 
11

  ) 

  +  b 
11

  b 
22

  −   (  b 
12

  )  2  = 0, (B.37)

and the two principal curvatures are

   
I
  = H +  √

_____
  H  2  − K   (B.38)

and

   
II
  = H −  √

_____
  H  2  − K  , (B.39)

where

 H =   
  

I
  +   

II
 
 _____ 

2
   =   

 g 
11

  b 
22

  − 2 g 
12

  b 
12

  +  g 
22

  b 
11

 
  _______________  

2 (  g 
11

  g 
22

  −   (  g 
12

  )  
2  ) 

   =   1 __ 
2
   g ij  b 

ij
  =   1 __ 

2
   b  

i
  i  (B.40)

is the mean or Germain (after Marie-Sophie Germain) 

curvature and

 K =   
I
   

II
  =   

 b 
11

  b 
22

  −   (  b 
12

  )  2 
 _________ 

 g 
11

  g 
22

  −   (  g 
12

  )  
2 
   =  b  

1
  1  b  

2
  2  −  b  

1
  2  b  

2
  1  (B.41)

is the Gaussian curvature. The Gaussian curvature 

is positive for synclastic (dome-like) surfaces and 

negative for anticlastic (saddle-like) surfaces. Minimal 

surfaces (soap films) have H = 0.
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B.4  The fundamental theorem 
of surface theory and the 
deformation of shells

The fundamental theorem of surface theory states that 

a surface is uniquely determined up to a rigid body 

movement and rotation if we know the coefficients of 

the first and second fundamental forms,  g 
ij
  and  b 

ij
 , as 

functions of the surface coordinates.

This is relevant to shell theory in that deformation 

of a shell is related to changes in  g 
ij
  and  b 

ij
 . If we differ-

entiate the first fundamental form (B.14) with respect 

to time, we obtain the rate of strain

   rate of increase of s
  _______________ 

s
   =   

  
ij
   i   j 

 ______ 
 g 

ij
   i   j 

  , (B.42)

where

  
ij
  =   1 __ 

2
     
∂ g 

ij
 
 ___ 

∂t
   (B.43)

are the components of the rate of membrane strain 

tensor.

Things are a bit more complicated for bending 

since changes in both  g 
ij
  and  b 

ij
  are usually involved. 

We also have to be careful not to define rate of 

bending as rate of change of curvature. Imagine a 

spherical shell expanding uniformly, its curvature is 

reducing, but it is not bending since bending must 

involve some relative rotation.

However, the values of  g 
ij
  and  b 

ij
  are not independent. 

We have compatibility conditions that ensure a shell 

fits together and continues to do so as it deforms. 

These conditions are Gauss’s Theorema Egregium and 

Peterson–Mainardi–Codazzi equations.

B.5  Gauss’s Theorema Egregium 
and Peterson–Mainardi–Codazzi 
equations

So far we have found out nothing particularly startling. 

However, Gauss’s Theorema Egregium (Latin for 

‘excellent theorem’) is one of the most surprising and 

elegant results in all mathematics, as well as having all 

sorts of geometric and structural implications for shell 

structures. It is often just called Gauss’s theorem, but 

there are other Gauss’s theorems.

The basic idea is very simple, we have three 

functions of    1  and    2 , namely x, y and z which define 

the surface. We then have eight quantities,  g 
11

 ,  g 
12

  =  

g 
21

 ,  b 
11

 ,  b 
12

  =  b 
21

 ,  b 
12

  =  b 
21

  – but as  g 
12

  =  g 
21

  and  b 
12

  =  b 
21

  

there are really only six – which define lengths on the 

surface and its curvature. But since the six quantities 

depend on only three, there must be three equations 

relating to the six quantities. These equations ensure 

that the surface ‘fits together’.

We have already differentiated twice to obtain

  g 
i,j

  =    ∂ 2 r
 _____ 

∂   i ∂    j 
   =  g 

j,i
  =    

ij
  k
    g 

k
  +  b 

ij
 n, (B.44)

and we are now going to differentiate for a third and 

final time,

 g 
k,ij

  =   1 __ 
2
   (  g 

nk,ij
  +  g 

in,kj
  −  g 

ki,nj
  )  g n 

 +   
kin

   g  
,j
  n  +  b 

ki,j
 n +  b 

ki
  n 

,j
 . (B.45)

Order of partial differentiation does not matter, and 

therefore writing  g 
k,ij

  −  g 
k,ji

  = 0 and substituting for  g 
k,ij

  

and  n 
,j
 ,

 (  R 
ijkm

  −  (  b 
ki
  b 

jm
  −  b 

kj
  b 

im
  )  )  g m 

 +  (  b 
ki,j

  +  b 
jp
    

ki
  p
   −  (  b 

kj,i
  +  b 

ip
    

kj
  p
   )  ) n = 0, (B.46)

where

 R 
ijkm

  =   1 __ 
2
   (  g 

im,kj
  +  g 

kj,mi
  −  g 

ki,mj
  −  g 

jm,ki
  ) 

  +  g np  (   
kjn

   
mip

  −   
kin

   
mjp

  )  (B.47)

and  R 
ijkm

  are the components of the Riemann–

Christoffel tensor, which appears in exactly this form in 

the general theory of relativity.

Thus, we have

   
j
   b 

ki
  =   

i
   b 

kj
 , (B.48)

which are the Peterson–Mainardi–Codazzi equations 

and

  R 
ijkm

  =  b 
ki
   b 

jm
  −  b 

kj
   b 

im
 , (B.49)
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which is Gauss’s Theorem. The symbol  denotes the 

covariant derivative, Green and Zerna (1968) use a 

vertical line, rather than a nabla or del symbol (  ),

   
i
   b 

jk
 = b 

jk,i
  −  b 

pj
    

ik
  p
   −  b 

pk
    

ij
  p  . (B.50)

The Riemann–Christoffel tensor has various symme-

tries which means that the only relevant term in two 

dimensions is

  R 
1212

 =  1 __ 
2
   ( 2 g 

12,12
  −  g 

11,22
  −  g 

22,11
  ) 

+  g np  (   
12n

   
12p

  −   
11n

   
22p

  )  =  b 
11

  b 
22

  −   (  b 
12

  )  2 . (B.51)

Thus, Gauss’s theorem is often written as

 K =   
 R 

1212
 
 ____ g   (B.52)

and it tells us that we can find the Gaussian curvature 

simply by measuring lengths on a surface.

It follows also that we can only change the Gaussian 

curvature by changing lengths on a surface.

B.6 Monge form

In the Monge form a surface is expressed as a height-

field, that is, z = z ( x, y ) , which is equivalent to writing 

x =    1  and y =    2 . Then we have:

 g 
11

  = 1 +  z  
,x
  2
   = g g 22 ,

 g 
12

  =  z 
,x
  z 

,y
  = −g g 12 ,

 g 
22

  = 1 +  z  
,y
  2
   = g g 11 ,

 n =   
−  z 

,x
 i −  z 

,y  
 j + k
 __________  √

_
 g    ,

 g = 1 +  z  
,x
  2
   +  z  

,y
  2
  ,

  b 
11

  =   
 z 

,xx
 
 ___  √

_
 g    ,

  b 
12

  =   
 z 

,xy
 
 ___  √

_
 g    ,

  b 
22

  =   
 z 

,yy
 
 ___  √

_
 g    , (B.53)

in which  z 
,x
  = ∂z/∂x and so on. The mean and Gaussian 

curvature are

H =   
 ( 1 +  z  

,y
  2
   )  z 

,xx
  − 2 z 

,x
  z 

,y
  z 

,xy
  +  ( 1 +  z  

,x
  2
   )  z 

,yy
 
   ________________________  

2  ( 1 +  z  
,x
  2
   +  z  

,y
  2
   )    

3
 __ 

2
  
 
   (B.54)

and

 K =   
 z 

,xx
  z 

,yy
  −  z  

,xy
  2

  
 __________ 

  ( 1 +  z  
,x
  2
   +  z  

,y
  2
   )  2 

   (B.55)

respectively.

B.7 Cylindrical polar coordinates

In cylindrical polar coordinates

 x = r cos ,

 y = r sin ,

z = z ( r,  ) ,

 r =   1 ,

=    2 , (B.56)

and

H =   
 (   r  2  +  z  

,
  2
   ) r z 

,rr
  + 2 z 

,r
  z 

, ( z 
,
 − r z 

,r ) +  ( 1 +  z  
,r
  2
   ) r ( r z 

,r
  +  z 

, )___________________________________________   
2  [  ( 1 +  z  

,r
  2
   )  r  2  +  z  

,
  2
   ]  

  3 __ 
2
  
 
  

 K =   
 r  2  z 

,rr
  ( r z 

,r
  +  z 

, ) −   (  z 
,
 − r z 

,r
 2 
  ___________________  

  [  ( 1 +  z  
,r
  2
   )  r  2  +  z  

,
  2
   ]  2 

   (B.57)

In the case of radial symmetry, derivatives with respect 

to  are zero and so

H =   
 z 

,rr
 
 _______ 

2  ( 1 +  z  
,r
  2
   )    

3
 __ 

2
  
 
   +   

 z 
,r
 
 ________ 

2r √
_____
 1 +  z  

,r
  2
    
  ,

 K =  
 z 

,rr
  z 

,r
 
 _______ 

r  ( 1 +  z  
,r
  2
   )  2 

  . (B.58)

B.8 Equal mesh net

An equal mesh net might be a fishing net, a string bag, 

a cable net or a gridshell.

We can write

  g 
11

  =  g 
22

  =  L 2  = constant,

  g 
12

  =  L 2 cos , (B.59)

where  is the angle between the cables, gridshell 

laths etc. The Christoffel symbols of the first kind 

now become
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111

  = 0,

 
112

  =  g 
12,1

  = −  L 2  sin  
,1
 ,

 
121

  =   
211

  = 0,

 
122

  =   
212

  = 0,

 
221

  =  g 
12,2

  = −  L 2  sin  
,2
 ,

 
222

  = 0, (B.60)

so that Gauss’s theorem reduces to

 K = −   1
 ______ 

  L 2  sin 
∂ 2 _____ 

∂   1 ∂   2 
  . (B.61)

This result is attributed to Chebyshev as a result 

of studying the problem of cutting cloth to make 

clothes.

B.9 Geometry and structural action

A pin-jointed truss in two dimensions or a space 

truss in three dimensions is a structure which resists 

loads by tensions and compressions in its members 

which try to prevent the distance between the nodes 

changing. A beam resists loads by using bending 

moments to try to prevent its curvature changing.

In the case of shell structures we have lengths 

on the surface defined by the first fundamental 

form, equation (B.14) and we have curvature of the 

surface defined by the second fundamental form, 

equation (B.34). Because shells are thin it is easier to 

change their curvature than lengths on the surface 

and therefore we want shells to work primarily by 

membrane action rather than bending – although we 

know that we must rely on bending action to help 

resist buckling.

We will now derive the membrane equilibrium 

equations from what we know about geometry. The 

same technique also works for bending action, it is 

just a bit more complicated. We will use virtual work 

to be consistent with our discussion of the finite 

element method, and also because it allows us to 

define membrane stress in terms of strain rate and 

rate of work.

Imagine a surface which is moving with a virtual 

velocity u. The rate of virtual membrane strain is 

then

   
ij
  =   1 __ 

2
     
∂ g 

ij
 
 ___ 

∂t
  

 =   1 __ 
2
   (   ∂r

 ___ 
∂   i 

      ∂u
 ___ 

∂    j 
   +   ∂u

 ___ 
∂   i 

      ∂r
 ___ 

∂    j 
   ) 

 =   1 __ 
2
   (  g 

i
     ∂u

 ___ 
∂    j 

   +   ∂u
 ___ 

∂   i 
     g 

j
  ) . (B.62)

We can now define the membrane stress components  

 ij =  ji  such that   ij   
ij
  is the rate of virtual work being 

done on the surface per unit surface area. Then the 

total rate of virtual work being done on the shell S is

 ∫ 
S

   

 

       ij   
ij
  √

_
 g  d   1 d   2  = ∫ 

S

   

 

       ij   1 __ 
2
   (  g 

i
     ∂u

 ___ 
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The first part of the last line can be integrated to 

produce a boundary integral which is the rate of 

virtual work being done on the shell by membrane 

stresses at the boundary,
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We therefore have the virtual work equation,
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in which p is the load applied to the shell per unit 

area. Thus

  ∫ 
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However the virtual velocity u can be chosen arbitrarily 

so that

 p +   ∂ ___ 
∂   i 

   (    ij  g 
j
  √

_
 g   )  = 0, (B.67)

which reduces to

p +   
i
    ij  g 

j
  +  b 

ij
    ij n = 0.
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The covariant derivative
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balances the in-plane components of load. The 

Christoffel symbols look after the fact that the base 

vectors change magnitude and direction in the plane 

of the surface.

The curvature multiplied by the membrane 

stress  b 
ij
   ij  balances the normal component of load. 

This result is particularly elegant and the membrane 

equilibrium equations can be made even nicer by 

writing them in symbolic notation without the indices:

 p +    +  ( b: ) n = 0. (B.69)

The membrane equilibrium equations can be derived 

and written in many different forms. In Chapter 

3 they are written in plane form in which the 

equilibrium equations are resolved in the horizontal 

and vertical directions. Horizontal equilibrium can be 

ensured using the Airy stress function leaving just one 

equation for vertical equilibrium. This has practical 

advantages for architectural shells where the vertical 

and horizontal have special significance, but it does 

blur the distinction between what happens in the 

plane of a shell and in the normal direction.

Further reading

Lectures on Classical Differential Geometry, Struik 

(1988). This classic work is probably the most 

accessible book on differential geometry. It uses u 

and v coordinates instead of   1  and    2 . It also uses 

E, F, G, e, f and g instead of  g 
11

 ,  g 
12

 ,  g 
22

 ,  b 
11

 ,  b 
12

  and  

b 
22

  respectively.

Theoretical Elasticity, Green and Zerna (1968). In 

Chapter 3 it said that if you only own one book on 

shell theory, it has to be this one. The same applies 

to the differential geometry of surfaces which is 

contained in the first thirty-nine pages. Green 

and Zerna (1968) use the letter ‘g’ for quantities 

in three dimensions – base vectors, coefficients of 

the metric tensor and so on – but the letter ‘a’ for 

the corresponding quantities on a surface. We have 

used ‘g’ on a surface. In addition they use Greek 

letters for indices in the range 1, 2 whereas we have 

used Latin.
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APPENDIX C

Genetic algorithms for structural 
design
Rajan Filomeno Coelho, Tomás Méndez Echenagucia, Alberto 
Pugnale and James N. Richardson

Genetic algorithms are a subclass of evolutionary 

algorithms. A Genetic Algorithm (GA) is defined by 

Goldberg (1989) as a ‘search algorithm based on the 

mechanics of natural selection and natural genetics’, 

but another definition, more focused on its way of 

functioning, is provided by John R. Koza in his 1992 

book, Genetic Programming: On the Programming of 

Computers by Means of Natural Selection:

The GA is a highly parallel mathematical algorithm 

that transforms a set (population) of individual 

mathematical objects […], each with an associated 

fitness value, into a new population (i.e. the next 

generation) using operations patterned after the 

Darwinian principle of reproduction and survival 

of the fittest and after naturally occurring genetic 

operations (notably sexual recombination).

In other words, in a random population of potential 

solutions, the best individuals are favoured and 

combined in order to create better individuals at the 

next generation. In the 1980s, genetic algorithms 

received an increasing recognition by scientists, and 

studies in fields ranging from biology, artificial intel-

ligence, engineering and business to social sciences 

began to appear. At present, GAs provide a robust 

and flexible tool to solve complex problems, including 

air-traffic programming, weather forecasts, share 

portfolios balance and electronic circuits design, in 

which a consolidated analytic way of resolution is 

unknown. Moreover, as far as the world of construction 

is concerned, GAs are increasingly being used to deal 

with the optimization of bridges and large-span struc-

tures, the morphogenesis of shells and membranes, 

and the spatial configuration of reciprocal structures.

C.1 Main characteristics

With respect to other traditional optimization and 

search procedures, GAs differ in four fundamental 

aspects, described by Goldberg (1989):

GAs search using a ‘population’ of candidate 

solutions, and not a unique solution;

GAs work with a coded version of the parameter 

set, and not the parameters themselves;

GAs are based on stochastic transition rules (they 

use randomized operators);

GAs are blind to auxiliary information; they only 

need an objective function (fitness function).

All these characteristics contribute to the typical GA’s 

robustness.

C.2 Terminology

The specific terminology for GAs derives from natural 

systems as well as from computer science technical 

vocabulary. For this reason, it is possible to find in 

technical literature the same concept expressed with 

two different, but equivalent, terms (see Table C.1). 

Many of these terms specifically refer to the world 

of natural systems and cannot be found in other 

optimization procedures. Examples are terms such 
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as ‘individual’, which represents a candidate solution 

to the evaluated problem, ‘population’, indicating a 

set of individuals considered at the same iterative 

step of the evolutionary process, and ‘generation’, 

synonymous to iteration, to refer to a specific step 

of the algorithm procedure. This is also the case 

with the three main operators of GAs – selection, 

reproduction and mutation – which are described in 

Section C.3.2.

C.3 Elements of a genetic algorithm

As with any systematic approach to search problems, 

GAs require two main elements in order for them to 

provide an effective and reliable result:

1. A representation scheme, describing each possible 

solution (individual) with a set of variables 

(chromosome), as well as the limits in which these 

variables can operate. This is done by means of 

parameterization and the definition of the param-

eters domain.

2. A fitness function, measuring the generated 

solutions (individuals) on the basis of a well-

defined performance parameter, and the respective 

evaluation criterion.

The definition of a problem for a GA implementation 

requires also several parameters and termination 

criteria to control the algorithm. The parameters 

include the number of generations, the population 

size, the number of parents and various coefficients 

that are applied on the GAs operators (selection, 

crossover, mutation, elitism). A termination criterion 

can be related to the fitness function (the algorithm 

can stop once a minimum required fitness value has 

been reached), it can be related to the number of 

solutions considered, number of generations, or even 

calculation time.

C.3.1 Procedure

The conventional procedure of a GA can be summa-

rized by the following steps:

1. Generate an initial, random population of 

individuals, or candidate solutions to the problem.

2. Evaluate the performance (fitness) of each individual.

3. Generate a new population of candidate solutions 

applying the following three genetic operators (or 

at least the first one):

a. Selection: select best individuals for the repro-

duction to the new population.

b. Crossover or reproduction: recombine genetic 

codes of selected individuals, creating new 

candidate solutions.

c. Mutation: apply random mutations to the 

genetic codes of new individuals.

4. Repeat steps two and three to evolve the population 

over a number of generations, until a satisfactory 

result is achieved.

C.3.2 Operators

Successive populations are generated from the 

previous population by way of three genetic operators: 

the ‘selection’ of best individuals, their ‘reproduction’ 

or ‘crossover’, and ‘mutation’. In order to further 

improve the general efficiency of the algorithm, some 

other secondary operators could be added to the main 

procedure, most commonly the ‘elitism’ operator. It is 

worth noting that the various user-defined parameters 

controlling these operators will be of great importance 

to the efficacy of the algorithm. As yet no universal 

Meaning Natural systems Computer science 

genetic codes chromosome string 

genetic constitution of an individual genotype structure 

observable characteristics of an individual phenotype parameter set, solution alternative, point 

basic unit of a genetic code gene feature, character, detector 

possible settings of a gene allele feature value 

the position of a gene in a genetic code locus string position

Table C.1 Comparison of natural and artificial GA terminology
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method exists to optimally choose these parameters 

and the experience of the user will play a dominant 

role in the choice of values for the parameters.

Selection

The selection operator retains individuals from the 

previous population. Different methods have been 

developed which all employ the fitness values in their 

selection, while some methods also incorporate a 

degree of randomness. Individuals with higher fitness 

generally have a greater probability of making a 

contribution to the new generation of individuals. 

The end result of the selection operator is the ‘mating 

pool’; it is a list of pairs of individuals which are to be 

used in reproduction (and crossover).

Crossover

The reproduction or crossover operator acts on the 

selected individuals, creating a new population of 

individuals. Crossover involves the ‘mating’ of 

individuals to produce offspring with characteristics 

of its predecessors. The offspring individual is created 

by copying part of the genetic code of one parent, and 

the rest from the other parent (Fig. C.1). Different 

crossover operators perform this operation in diverse 

ways, introducing some level of randomness. The 

probability of a crossover operation taking place is set 

by the user. This operator is traditionally considered 

as the ‘core’ of the GA, because it is the main cause of 

variation and innovation of candidate solutions.

Mutation

The mutation operator performs genetic variations 

in chromosomes of the individuals of a population. 

The mutation operator is also implemented with a 

probability chosen by the user. Similarly, the scale 

of the mutation can also be set. Mutation consists 

of replacing entries in the chromosome by random 

values within the permitted range of the variable. The 

mutation rate is usually relatively small compared to 

the crossover rate, as is the mutation scale, the relative 

number of mutations in the chromosome. While 

crossover is generally considered as a constructor 

of new candidate solutions, mutation works as a 

disruptor of existing configurations; for this reason, it 

plays a secondary role with as main purpose avoiding 

genetic drift (when all individuals become identical, 

evolution is no longer possible).

Elitism

The ‘elitism’ operator, introduced by Kenneth Alan 

De Jong in his 1975 doctoral thesis ‘An analysis of 

the behavior of a class of genetic adaptive systems’, 

is the most common secondary operator. It works 

in addition to the selection method, forcing the 

GA to retain a fixed number of best individuals at 

each generation in order to save their chromosomes 

from destruction due to crossover and/or mutation, 

therefore avoiding a maximum performance decrease 

during the evolutionary process. Generally, it signifi-

cantly improves the algorithm’s efficiency.

parents offspring

A

B

parents offspring

A

B

topological characterization of the 
operators

(a) (b)

Figure C.1 Simple (a) single-point and (b) two-point crossover operators
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C.4  Multi-objective genetic 
algorithms

When we study multiple and contrasting objective 

functions, with any search method, we have to consider 

the fact that the solutions will not be optimal for 

all functions. Therefore, the final result of a multi-

objective search is inherently a set of solutions, not 

a single individual. This group of solutions is called 

‘trade-off set’, ‘Pareto front’ or ‘non-dominated set’. It 

comprises solutions that are said to be not dominated. 

The concept of dominance and non-dominance is 

defined as follows:

In order for solution A to dominate solution 

B, solution A has to outperform, or equal B in 

all functions, as well as outperform B in at least 

one function. If solution A outperforms or equals 

solution B in all objective functions except in one 

in which solution B outperforms A, then A and B 

are non-dominated solutions.

GAs can easily be adapted to multi-objective search 

and optimization thanks to their inherent handling of 

multiple potential solutions, thereby leading to various 

trade-off designs. Different ways of transforming 

a GA into a Multi-Objective Genetic Algorithm 

(MOGA) by modifying some of the operators have 

been proposed (Deb, 2001). Various MOGAs employ 

different genetic operators in order to introduce the 

characteristics of multi-objective search and optimi-

zation, but one of the most important modifications in 

most MOGAs is done in the selection operator. The 

main differences in the selection operator (see Section 

C.3.1) are:

Pareto-optimality: solutions are not ranked by their 

performance in the objective functions directly, 

but are ranked by their level of domination in the 

population.

Clustering: how similar is this design to other 

designs in the population? Promoting diversity in 

the population leads to better exploration of the 

design space.

For a full explanation on MOGAs, the reader is 

referred to Deb (2001).

C.5  Application to structural design 
and optimization

For structural design and optimization, the use of 

GAs is very attractive, for the following reasons:

The nature of the variables: structural optimization 

problems may be characterized by mixed variables 

(continuous, discrete, integer and/or categorical). 

GAs handle these variations naturally, whereas 

gradient-based algorithms, for instance, are mainly 

devoted to problems with continuous variables and 

differentiable functions.

The nature of the functions: as the functions 

involved in structural optimization (e.g. the 

maximum stress among all elements of a truss) 

may be non-differentiable, and sometimes discon-

tinuous, gradient-based techniques are excluded. 

Only algorithms requiring only the values of the 

functions, and not their derivatives, are applicable.

Exploration of the search space: as they work on a 

population of solutions instead of a single point (at 

each iteration) – even while blind to any specific 

knowledge about the problem – GAs are less 

likely to be trapped in a local minimum, and effec-

tively find the optimal global value. The schemata 

theorem has shown that the way recombination of 

individuals is performed allows the algorithm to 

explore widely the whole design space. GAs are 

thus very well suited for noisy and multi-modal 

functions.

C.5.1 Chromosomes

When considering structural problems, the variables 

describing each individual, that is, its chromosome, 

depend on the type of optimization considered. For 

instance, the chromosome can consist of member 

sizing, nodal position (shape) or topology variables, 

or of some combination of these three types. It can 

consist of bit string representation or real-valued 

representation, though mutation and crossover 

operators are typically a bit more involved for real-

valued representation. The capability to handle 

variables of different types at once is one of the great 

strengths of GAs as an optimization procedure. GAs 

allow, for example, for combining continuous shape 
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variables with discrete topology variables in a single 

chromosome representation.

Figure C.2 shows a chromosome representation of 

the shape and topology variables for a two-dimensional, 

four-node structure. Each entry in the chromosome 

refers to one of the variables considered. In the 

example, the first four entries correspond to the shape 

variables  x 
1
 ,  y 

1
 ,  x 

2
  and  y 

2
 , the coordinates of nodes 

1 and 2. The remaining entries in the chromosome 

correspond to the elements defined by the nodes they 

connect. The binary 0/1 topology variables refer to the 

existence or non-existence of the element.

C.5.2 Fitness function

Besides the abstract definition of the set of potential 

solutions, a measure of the structural performance 

(used in step two of the procedure described in 

Section C.3.1) must be chosen in order to drive the 

optimization process. In single objective optimization, 

basic choices could be measures of mass or stiffness. 

The maximum vertical displacement of a structure is a 

suitable structural parameter to have a raw evaluation 

of its structural behaviour. However, analogous results 

could be obtained by calculating the fitness function 

from other integral parameters of the structure, such 

as total strain energy or buckling multiplier.

Furthermore, there may be structural properties 

associated with the chromosome that we wish to 

know in order to ensure that the structure adheres 

to certain structural requirements. For example, the 

maximal stresses in the structure should not exceed 

a certain limit, ensuring satisfaction of the stress 

constraint. In general, violation of the constraints 

will either be used to augment or penalize the fitness 

function, so as to influence the selection of unfeasible 

solutions, or eliminate them as candidate designs. The 

evaluation of the individual’s fitness often occurs by 

way of structural analysis such as the force method 

or displacement method (e.g. finite element analysis). 

Whatever method of structural analysis, the evalu-

ation will be called at least once per iteration of the 

genetic algorithm. It is noted though, that for very 

complex problems, alternative methods to evaluate the 

objective functions exist; for example, response surface 

methods, surrogate modelling. Since the GA itself is 

a black-box type procedure, the operators (selection, 

crossover and so on) are not specific to structural 

design and optimization.

Further reading

An Introduction to Genetic Algorithms, Mitchell 

(1998). A simple and complete introductory book 

to genetic algorithms, implementing the main 

concepts of the work and research developed by 

Holland, Goldberg and Koza during the last four 

decades. It should be used to program a basic GA 

procedure, as well as for the development and 

tuning of the routines related to the three main 

GA operators.

Genetic Algorithms in Search, Optimization, and 

Machine Learning, Goldberg (1989). The initial 

reference book on genetic algorithms.

Multi-Objective Optimization using Evolutionary 

Algorithms, Deb (2001). Widely regarded as the 

definitive book in its field.

chromosome

shape variables topology variables

5.34 0.68 6.91 4.23 1 1 1 10

0

3

2

1

x
2     

,   y
2( )x

1     
,   y

1( ) 0,1{ } 0,2{ } 1,2{ } 1,3{ } 2,3{ }

Figure C.2 Chromosome representation of a four-node, pin-jointed structure. Entries in the chromosome correspond to 
shape variables (coordinates of nodes) and topology variables (existence or non-existence of elements)
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APPENDIX D

Subdivision surfaces
Paul Shepherd

This appendix introduces the subdivision surface as an 

efficient method of representing shell geometry in an 

optimization framework.

Many shell structures are designed using smooth 

continuous surface modelling techniques such as 

NURBS surfaces. However, whilst these models are 

easy to manipulate in terms of geometry, they are 

extremely difficult to manufacture accurately and 

inevitably need to be split into subfields in order to 

provide supporting structure for façade panels. Even 

building shells, which might be single monocoque 

structures when completed, usually require formwork 

built by traditional methods using discrete elements. 

Therefore, such projects are often modelled using a 

discrete mesh representation of the surface, rather 

than a parameterized continuous NURBS surface, at 

least in the engineering and fabrication phases.

A mesh representation uses polygons (usually 

triangles or quadrilaterals) to describe the continuous 

underlying surface. Each polygon is known as a face, 

made up of straight lines (edges) which go between 

the corners (vertices) of each polygon. Meshes are 

particularly suited to engineering disciplines since the 

calculation software usually requires a finite element 

mesh for the analysis of structural behaviour. This 

is driven by the fact that the underlying equations 

are solved only at discrete points on the surface (the 

vertices) and mathematical assumptions are made as 

to how the quantities being modelled vary in between. 

The surface mesh may be extended into three dimen-

sions for a finite element or finite volume analysis. The 

disadvantage of a mesh representation is that through 

splitting the surface up into triangular or quadrilateral 

elements the smoothness of the underlying surface is 

lost. There is therefore always a compromise between 

an increasingly accurate representation of the smooth 

surface and keeping the number of faces which need 

to be stored and manipulated down to a manageable 

size.

D.1 Description

Subdivision surfaces offer a solution to this dichotomy. 

At their heart is a carefully calculated subdivision 

algorithm (known as a scheme) for taking an input 

base mesh and refining it, replacing each face with 

a number of smaller faces. The resulting finer mesh 

can then have the same algorithm applied to it to 

produce an even finer mesh, and so on. This results 

in a sequence of finer and finer meshes, each being a 

more accurate representation of an underlying smooth 

surface.

Subdivision surfaces have been used widely by 

the computer gaming and animation industries as an 

efficient way of representing the surface geometry of 

animated objects. Only a very coarse base mesh repre-

sentation of the object, using perhaps only hundreds 

of polygons, is required to be stored, leaving precious 

computer memory available for other objects, sounds 

and so on. If such an object then needs to be rendered 

very close to the camera, a large number of subdivision 

steps can be performed on the base mesh to generate 

the smooth surface detail required. If, however, the 

object is placed very far from the camera, a represen-

tation of the object with very few subdivision steps is 

sufficient, since the extra detail provided by creating 

more polygons will not be noticeable.

D.2 Implementation

There are many different subdivision schemes, some 

require triangular base meshes, others quadrilateral 
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meshes and others can cope with higher order polygons 

or even a mixture. The basic process of a subdivision 

scheme starts by taking each face in the base mesh and 

refining it topologically in some way. For example, the 

Loop subdivision scheme (Loop, 1992), which is used 

for the examples here, is applied to triangular meshes 

such as the one shown in Figure D.1a, which repre-

sents a single face of a spherical mesh. Each edge of 

every triangle is split into two by the introduction of 

a new child vertex, and each triangle is then replaced 

by four new smaller triangles, as shown in Figure D.1b.

an average position by weighting the vertices at the 

ends of its edge (shown orange in Figure D.2a) by 3/8 

and the other vertex of the faces touching the edge 

(shown in green in Figure D.2a) by 1/8. The approxi-

mating Loop scheme also moves the parent vertices 

to a new position, in this case weighted at 5/8 of its 

old position and 3/8 of the average position of the 

surrounding vertices, as shown in Figure D.2b.

vertex

face

edge

(a) (b) (c) (d)

Figure D.1 Successive stages of a subdivision scheme 
with (a) base mesh, (b) topological split, (c) child vertices 
smoothed and (d) parent vertices smoothed

Clearly, whilst this topological step does indeed 

create a representation of the surface with more faces 

(in this case four times as many), nothing is gained in 

terms of surface representation, since the geometry of 

the original planar faces remains. Subdivision schemes 

therefore always involve a second step, which moves 

the newly created child vertices to a new position, 

based on a weighted average of the parent vertices 

around it, as shown in Figure D.1c. This new position 

allows the refined mesh to more closely represent 

the underlying smooth surface. For some subdivision 

schemes, known as interpolating schemes, this second 

step is sufficient, and the subdivision interpolates 

a smooth surface through the vertices of the base 

mesh. However, approximating schemes also exist, 

such as the Loop scheme, whereby a third step is 

performed which also moves the parent vertices to a 

new weighted-average position, as shown in Figure 

D.1d. Approximating schemes do not respect the 

original base mesh completely, but approximate it 

with a very smooth surface.

The new positions of the vertices are calculated 

using very specific weightings of the surrounding 

vertices to ensure that the surface is smooth. For 

example, the Loop scheme places child vertices at 

1/8

1/8

3/8

3/(8n)

3/(8n)

3/(8n)

3/(8n)

3/(8n)

3/(8n)

5/8n3/8

(a) (b)

Figure D.2 Weighting of internal vertices for Loop 
subdivision scheme with (a) child vertices and (b) parent 
vertices

The edges of a surface usually require special cases 

of the subdivision scheme to be applied since, for 

example, there will only be one face touching an edge. 

For the Loop scheme, child vertices created along a 

boundary edge are placed at the midpoint of the edge, 

as shown in Figure D.3a. Parent vertices on an edge 

are positioned with a 3/4 weighting of their original 

position and 1/8 of the position of each of the two 

neighbouring boundary vertices, irrespective of the 

locations of their internal neighbours, as shown in 

Figure D.3b.

(a)

1/2 1/2 1/8 1/83/4

(b)

Figure D.3 Weighting of boundary vertices for Loop 
subdivision scheme

If a base mesh is repeatedly subdivided using such 

schemes, the geometry converges onto what is known 

as the limit surface, and it is this limit surface which it 

is proposed should be used to represent the geometry 

of a shell.
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D.3 Benefits for building design

Apart from the general advantages that a mesh repre-

sentation of a surface has in terms of buildability, 

subdivision surfaces offer two main benefits over tradi-

tional tools for modelling the geometry of building 

shells, benefits for analysis and for optimization.

The hierarchic nature of the mesh topology means 

that a single subdivision surface can simultaneously 

be represented at many different levels of detail. 

Therefore, independent of the actual shape of the 

underlying surface, a range of mesh topologies can be 

extracted, which can represent façade cladding panels 

or supporting structure with a required size or spacing. 

For example, if a given surface is to be clad with 

glass panels, and each panel is to be cut from a 2m 

wide sheet of glass, then the mesh can be subdivided 

down until each polygon (triangle or quadrilateral) 

is less than 2m across. This allows the designer easy 

control of the mesh size, and therefore to find a 

balance between the size of panels and the number of 

connections, without changing the geometry of the 

underlying surface.

Whilst useful in itself, this multiple level-of-detail 

representation is especially beneficial when multi-

objective optimization is to be performed on the 

surface.

As part of the design and engineering process, a 

given building surface is often optimized in some way 

to improve its performance. Structural optimization 

will attempt to identify small changes in the shape 

which will lead to disproportionately large savings in 

material. This can be achieved either by placing struc-

tural members only where they are needed, and thereby 

minimizing the number of members required, and/or 

by aligning structural members so that they can effec-

tively transmit loads to the supports, thereby reducing 

the size of each member. Wind and snow loads can 

be reduced by modifying a building’s shape. Similarly 

the environmental performance of a building can be 

improved by considering the thermal, ventilation and 

daylighting implications of its orientation on the site, 

shape and self-shading.

For each of these objectives, an analysis of the 

performance of a given shape will need to be carried 

out, using a particular representation of the building 

envelope. As mentioned above, the majority of these 

analyses will require a discrete mesh-like represen-

tation, and the granularity of the mesh required 

will vary depending on the type of analysis being 

performed. For example, a finite element structural 

analysis might require the mesh to be discretized in 

a way that reflects the proposed supporting structure, 

whereas a computational wind-flow analysis might 

need a much finer analysis mesh and a solar energy-

generation calculation could be sufficiently accurate 

even with a very coarse mesh representation. Finite 

element structural analysis of a continuous shell 

requires shape functions to interpolate the geometry 

between nodes (see Appendix A) and the subdivision 

surface itself could be used for this.

The hierarchical nature of a subdivision surface 

is therefore ideally suited to such multi-objective 

optimization. Given the same underlying proposal for 

a particular building’s shape, many different meshes, 

representing many different levels of detail, can be 

quickly extracted and used for performance analysis.

Subdivision can be seen as a smoothing process, 

whereby the coordinates of the divided mesh vertices 

are a smoothed average of their surrounding parent 

vertex neighbours. In this way the coordinates of 

a mesh are smoothed to form successively close 

approximations to the underlying limit surface. In fact 

it can be shown (Zorin et al., 2000) that in general 

the limit surface is G2-continuous, at least away from 

the boundaries or vertices with unusual numbers 

of neighbours. This means that there is no sudden 

change in shape (the surface does not have gaps), in 

surface tangent (no creases), or in rate-of-change of 

tangent (no distortions in visual reflections). This can 

make subdivision surfaces particularly desirable for 

aesthetic reasons, since the resulting building surface 

would appear smooth.

Another benefit of the smoothing process is that 

it is not only the coordinates of the vertices which 

can be smoothed. Any set of numerical values can be 

associated with each vertex, and these values can be 

smoothed in exactly the same way as the coordinates, 

by taking the same weighted average of the values 

of the neighbouring vertices. This means that, for 

example, a colour could be applied to each vertex in 

the base (coarse) mesh, and all successive subdivided 

meshes would automatically smooth out the colours 

across the surface. This could similarly be applied to 
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more practical parameters such as façade permeability 

or transparency values, louvre angles or cladding offset 

distances. Such quantities can be defined on the base 

mesh just where required and the resulting subdivided 

surface would distribute them evenly over the entire 

surface in a G2-continuous manner in exactly the 

same way as the vertex positions.

D.4 Subdivision mesh

Using a subdivision surface framework involves an 

inherent triangular or quadrilateral mesh, and this is 

an obvious candidate for a structural mesh too. Since a 

subdivision surface can be sampled at various levels of 

subdivision, many possible grids are available at many 

different densities (Fig. D.4a–c). This means that 

sufficiently many levels of subdivision can be applied 

such that the individual triangular panels are small 

enough to be manufactured in a cost-effective manner, 

but the mesh is not so dense as to lead to prohibitively 

many members and connecting nodes.

Of course, not all the potential members need be 

used as a structural element. Subsets of the subdi-

vision mesh edges could be used for the structure to 

simplify its construction and change its aesthetic (Fig. 

D.4d, e). Similarly not all potential members need be 

the same size, and a system of primary and secondary 

structure could be introduced (Fig. D.4f ).

D.5 Advantages

A subdivision surface framework allows a very fast 

parametric study to be performed on an underlying 

smooth surface. It offers meshes with multiple levels 

of detail to be extracted with no extra effort, which is 

particularly useful if many different types of analysis 

are to be performed, each requiring a mesh with a 

different density. This efficiency can be especially 

advantageous if automated multi-objective optimi-

zation routines are to be applied, since each analysis 

can be performed on a suitable mesh and the results 

directly compared.

Despite these advantages, there remain a number 

of issues which will need to be addressed if subdi-

vision surfaces are to be adopted for shell design by 

the mainstream architectural design community.

D.6 Disadvantages

The main challenge in using subdivision surfaces as 

part of a standard building design process is the lack 

of Boolean operations such as intersection, union and 

difference.

The more general problem of calculating the inter-

section between two subdivision surfaces is yet to 

be solved satisfactorily, not least because there is 

no obvious way of representing the resulting curve. 

Until more robust methods of representing subdi-

vision surfaces, if found, and of performing Boolean 

operations on them, there will inevitably be a point 

in the design of every building where the subdivision 

framework must be left behind and more tradi-

tional methods of representing the geometry (such as 

NURBS) will have to be adopted.(a) (b) (c)

(d) (e) (f )

Figure D.4 Possible structural grids (a–c) resulting directly 
from subdivision, (d–e) alternatives subsets of the mesh 
edges and (f) applying member hierarchy
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forced stone and brick structures. He has received the 

Hangai Prize (2007) and Tsuboi Award (2010) from 

the International Association of Shells and Spatial 

Structures (IASS) as well as the Edoardo Benvenuto 

Prize (2012). He developed thrust network analysis 

for the analysis of historic vaulted masonry and design 

of new funicular shells.

Diederik Veenendaal is a civil engineer and a 

research assistant at the BLOCK Research Group, 

ETH Zurich, Switzerland. He received his Masters 

from TU Delft, Netherlands, on the form finding and 

evolutionary optimization of fabric formed beams. 

He started his career at Witteveen+Bos engineering 

consultants, Netherlands, working on groundfreezing 

calculations and safety analysis for the downtown 

subway stations of the North/South subway line in 

Amsterdam and the structural design for the largest 

tensioned membrane roof in the Netherlands, the 

ice skating arena De Scheg. In 2010, he started his 

doctoral research at ETH, comparing existing form-

finding methods and developing new ones for flexibly 

formed shells and other structural systems.

Chris Williams is a structural engineer and a Senior 

Lecturer at the University of Bath, UK. He has been 

Visiting Professor at the Royal Academy of Fine Arts, 

Copenhagen, Denmark. He specializes in computa-

tional geometry and structural mechanics, in particular 

for lightweight structures and tall buildings, and his 

work has been applied by architects and engineers, 

including Foster + Partners, Rogers Stirk Harbour + 

Partners and Buro Happold. He worked at Ove Arup 

and Partners, where he was responsible for structural 

analysis of the Mannheim Multihalle. Since then, he 

has defined the geometry and performed nonlinear 

structural analysis for such projects as the British 

Museum Great Court roof, Weald & Downland 

Museum gridshell, and the Savill Gardens gridshell.

 From left to right: Sigrid Adriaenssens, Philippe Block, 
Diederik Veenendaal and Chris Williams
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Co-authors

Bill Addis works as a consulting engineer and is 

an Affiliated Lecturer at the School of Architecture, 

University of Cambridge, where he had studied 

engineering. He worked as a design engineer with 

Rolls-Royce Aeroengines and later studied at the 

University of Reading where he completed his PhD 

in the history and philosophy of engineering. He has 

authored many publications including Building: 3,000 

Years of Design, Engineering and Construction, and is 

co-editor of Construction History.

Shigeru Ban is an architect, head of Shigeru Ban 

Architects and Professor at Kyoto University of Art 

and Design. He studied at the Southern California 

Institute of Architecture and the Cooper Union, 

graduating in 1984. He worked for Arata Isozaki, 

before opening his own studio in Tokyo in 1985. He 

has won many honours and awards, and worked on 

seminal projects such as the Japan Pavilion at Expo 

2000 in Hannover with Frei Otto and the 2010 

Centre Pompidou in Metz.

Mike Barnes is a structural engineer, and Professor 

Emeritus of Building Engineering at Bath University, 

where he originally succeeded Ted Happold. He is 

winner of the IStructE Lewis Kent Award (2005) 

and was Visiting Professor at the Bauhaus. He is 

involved in the assessment of the Montreal Olympic 

Stadium roof, and performed checking analysis of the 

Millennium Dome. He is famous for applying and 

developing dynamic relaxation for the form finding 

and structural design of lightweight and widespan 

structures.

Shajay Bhooshan is an architect and Lead Designer 

and head of the computational design group 

ZHA|CODE at Zaha Hadid Architects, having 

previously worked at Populous on projects such as 

the Millennium Dome. He completed his Masters 

at the Architectural Association Design Research 

Laboratory, London in 2006. He is studio tutor at 

the AA-DRL and director of the AA Visiting School 

India. He has applied his expertise in computation 

and form finding to ZHA’s design practice and several 

shell pavilions.

David P. Billington is a structural engineer and the 

Gordon Y. S. Wu Professor of Engineering Emeritus 

in the Department of Civil and Environmental 

Engineering at Princeton University. He is a member 

of the National Academy of Engineering and a Fellow 

of the American Academy of Arts and Sciences. He is 

an eminent authority on thin-shell concrete structures, 

and has authored numerous detailed books on struc-

tural engineers such as Robert Maillart, Christian 

Menn, Heinz Isler and Félix Candela.

Kai-Uwe Bletzinger is a civil engineer and Professor 

at the Chair of Structural Analysis at TUM, Germany. 

He obtained his doctorate in 1990 at the University 

of Stuttgart and in 1996 accepted the Associate 

Professorship of Numerical Methods in Statics at 

the University of Karlsruhe. He is on the editorial 

board of Computers & Structures and review editor 

of Structural and Multidisciplinary Optimization. 

He has developed methods for form finding, shape 

optimization and patterning of lightweight shell and 

membrane structures.

Philippe Bouillard is a civil engineer and became 

Associate Professor in 1999 and Full Professor in 2005 

at Université Libre de Bruxelles (ULB), Belgium. He 

started his career as a project manager for French 

contractors Dumez EPS and SAE. His main research 

activity is computational dynamics and vibro-acoustics 

with a special emphasis on verification and validations 

of numerical models and on the development of 

generalized finite element formulations.

Rajan Filomeno Coelho is a civil engineer and 

Associate Professor at the Building, Architecture & 

Town Planning Department (BATir) at ULB, Belgium. 

He completed his PhD in 2004 at the ULB, followed 

by postdoctoral studies at Cenaero, Belgium, and at 

the Université de Technologie de Compiègne, France. 

His current research interests include multidisci-

plinary design optimization, multicriteria evolutionary 

algorithm, metamodelling techniques and optimi-

zation under uncertainty.

Maria E. Moreyra Garlock is a civil engineer and 

Assistant Professor of Civil Engineering at Princeton 

University. Before becoming a professor, she spent 
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several years as a consulting structural engineer in New 

York City designing concrete and steel structures with 

Leslie E. Robertson Associates. She has published 

numerous articles on the works of Félix Candela and 

co-authored the 2008 book Félix Candela: Engineer, 

Builder, Structural Artist.

Richard Harris is a structural engineer and Professor 

of Timber Engineering at the University of Bath, after 

working as Technical Director with Buro Happold. 

He worked with large international contractors, on 

projects in the UK and overseas, before joining Buro 

Happold in 1984. He has published several award-

winning papers and was responsible for a wide range 

of timber engineering projects, including the Globe 

Theatre, the Downland Gridshell and the Savill 

Building.

Sawako Kaijima is an architect and Assistant 

Professor in Architecture and Sustainable Design at 

the Singapore University of Technology and Design. 

She obtained her Masters in 2005 from MIT after her 

Bachelors in Environmental Information from Keio 

University, Japan. While working at AKT, she provided 

consultancy for high-profile projects by architecture 

practices such as ZHA, Thomas Heatherwick, Fosters 

+ Partners, etc. She co-developed software for the 

intuitive use of structural engineering methods in 

design.

Axel Kilian is an architect and Assistant Professor for 

Computational Design at Princeton University. He 

previously taught Computational Design at TU Delft 

and at the Department of Architecture at MIT, and 

is co-author of the book Architectural Geometry. He 

has lectured and published widely on his research 

on the role of computational design in design explo-

ration. He is known for pioneering the application of 

particle-spring systems to structural form finding and 

design.

Lorenz Lachauer is an architect and a research 

assistant at the Chair of Structural Design and the 

BLOCK Research Group, both ETH Zurich. He 

started his career at Herzog & de Meuron, first 

as project architect and later as member of the 

Digital Technology Group. His research is focused 

on equilibrium-based design methods for structural 

design in architecture, and concepts which allow for 

the integration of structural constraints into design 

processes.
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engineer. He received his doctorate in Munich in 
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of Stuttgart in 1960, receiving honorary degrees from 

ETH Zurich (1993) and Donetsk National Technical 

University (1995). He worked on the Munich Olympic 

Roofs in 1972 and is famous for developing the force 

density method which is widely used in the design of 

membrane, but also shell structures.

Irmgard Lochner-Aldinger is a structural engineer 

and Professor at Biberach University of Applied 

Sciences, as well as associate at Peter & Lochner 

Consulting Engineers, Stuttgart. Following work as 

a project engineer for Professor Polónyi and Arup, 

both in Berlin, she obtained her doctorate from the 

Institute for Lightweight Structures and Conceptual 

Design (ILEK) in 2005. She teaches and publishes on 

the application of optimization methods in structural 

and architectural design.

Tomás Méndez Echenagucia is an architect and 

a PhD candidate at the Polytechnic University of 

Turin. He holds a double degree in Architecture 

from Central University of Venezuela (UCV) and 

Politecnico di Torino. He was awarded the IASS 

Hangai Prize in 2008. His research focuses on multi-

disciplinary search and optimization tools for the 
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structural and environmental design.

Panagiotis Michalatos is an architect and Assistant 

Professor of Architectural Technology at the Harvard 

Graduate School of Design. He holds a Master of 

Science in Applied IT from Chalmers Technical 

University, Sweden. While working as a computa-

tional design researcher for structural engineering 

firm AKT, he provided consultancy and computa-

tional solutions for a range of high-profile projects. 

He co-developed a range of software applications for 

the intuitive and creative use of structural engineering 

methods in design.
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Laurent Ney is a structural engineer and founder 

of Ney & Partners in Brussels, Luxembourg and 

Japan. He previously worked from 1989 to 1996 at 

Bureau d’études Greisch in Liège, and has lectured 

on construction stability since 2005 in several 

Belgian universities. His practice is characterized on 

design by research: optimization and form finding. 

Constructability and sustainability are integral parts 

of his designs.

John Ochsendorf is a structural engineer and 

the Class of 1942 Professor of Architecture and 

Civil and Environmental Engineering at the MIT, 

where he directs the Structural Design Lab and the 

Masonry Research Group. He is a founding partner 

of Ochsendorf, DeJong & Block LLC. He is the 

author of the 2010 book Guastavino Vaulting: The Art 

of Structural Tile. He won the Rome Prize and was 

named a MacArthur Fellow in 2008.

Daniele Panozzo is a computer scientist and a post-

doctoral researcher at the Interactive Geometry 

Lab, ETH Zurich. He studied at the University of 

Maryland, was a visiting researcher at the Courant 

Institute of Mathematical Sciences, New York 

University and earned his PhD in Computer Science 

from the University of Genova in 2012. His research 

interests are digital geometry processing, shape 

modelling, computational photography and architec-

tural geometry.

Alberto Pugnale is an architect and a Lecturer in 

Architectural Design at the University of Melbourne. 

Previously, he was Assistant Professor at Aalborg 

University in Denmark. He has won the IASS Hangai 

Prize (2007) and a grant from the ISI Foundation 

in Turin (2008), related to the computational 

morphogenesis of freeform structures and complex 

architectural–structural bodies. His research interests 

are also in the fields of reciprocal structures and 

construction history.

Ekkehard Ramm is a civil engineer and Professor 

Emeritus of the Department of Civil and 

Environmental Engineering at University of Stuttgart. 

After postdoctoral positions in Berkeley and Stuttgart, 

he became an Associate Professor in 1976, and Full 

Professor (Chair) in 1983 and was Head of the 

Institute of Structural Mechanics until 2006. He 

received the IASS Tsuboi Prize and Torroja Medal, 

and the IACM Gauss–Newton Medal. The central 

theme of his research on structural mechanics is shell 

structures.

James N. Richardson is a structural engineer and 

architect and an FNRS fellow and PhD candidate 

at the Universite Libre de Bruxelles. He studied 

applied mathematics at the University of Cape 

Town, civil engineering and architecture at the Vrije 

Universiteit Brussel and the Technical University of 

Eindhoven, and worked as a structural engineer at 

Guy Nordenson & Associates. His research interests 

include discrete topology optimization, optimization 

under uncertainty and topology optimization of large-

scale structures.

Matthias Rippmann is an architect, a research 

assistant at the BLOCK Research Group, ETH 

Zurich, and founding partner of design and consulting 

firm ROK. He graduated from the University of 

Stuttgart in 2007. He worked for LAVA and Werner 

Sobek Engineers as an architect and programmer on 

projects such as Stuttgart 21 and the Heydar Aliyev 

Centre, and studied at the Institute for Lightweight 

Structures (ILEK). His research is focused on struc-

tural form finding linked to construction-aware design 

strategies.

Mutsuro Sasaki is a structural engineer, head of 

the structural consulting office Sasaki and Partners 

(SAPS) and Professor at Hosei University in Tokyo. 

He established SAPS in 1980, after working with 

Kimura Structural Engineers for ten years. Since, he 

has pushed the envelope on advanced structural design 

techniques and collaborated with renowned architects 

such as Toyo Ito and SANAA, engineering several 

recent reinforced concrete shells, such as the EPFL 

Rolex Learning Centre in Lausanne, Switzerland.

Mario Sassone is a structural engineer and Assistant 

Professor at the Polytechnic University of Turin. His 

research concerns the computational analysis of time-

dependent effects on steel, concrete and composite 

structures, and the structural and architectural 
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optimization of reinforced concrete shells by means 

of artificial intelligence techniques. He is currently 

working on bridging the gap between the architec-

tural issues and the computational approaches to 

structural and physical problems.

Jörg Schlaich is a structural engineer, founding partner 

of Schlaich Bergermann und Partner (SBP), and 

Professor Emeritus of the University of Stuttgart. He 

studied architecture and civil engineering in Stuttgart 

and Berlin, before obtaining his Masters from Case 

Western Reserve University in Cleveland in 1960. 

He joined Leonhardt und Andrä as design engineer 

and became partner in 1970, before founding SBP 

in 1980, focusing on lightweight structures. He is the 

developer of the Solar Updraft Tower and is largely 

credited for promoting strut-and-tie modelling for 

reinforced concrete.

Axel Schumacher is a mechanical engineer and 

Professor of Numerical Methods and Optimization in 

Product development at the University of Wuppertal 

(BUW). He studied at the Universities of Duisburg 

and Aachen, and performed research at the University 

of Siegen. Between 1999 and 2002 he was project 

leader for structural optimization at Adam Opel AG, 

and previously was professor of automotive engineering 

at the University of Applied Sciences in Hamburg.

Patrik Schumacher is an architect and partner and 

managing director at Zaha Hadid Architects in 

London. He has been the co-author of many key 

projects such as the National Italian Museum for 

Art and Architecture of the 21st Century (MAXXI) 

in Rome. His interest in shell structures is part and 

parcel of a more general interest in advanced struc-

tural engineering and its capacity to handle, shape and 

exploit complex, differentiated geometries via relative 

optimization strategies.

Paul Shepherd is a structural engineer and mathe-

matician and Lecturer in Digital Architectonics at 

the University of Bath. He studied at Cambridge 

University and obtained a PhD in Structural 

Engineering at Sheffield University. At Buro Happold, 

he developed modelling and analysis software, and 

worked on projects such as Stuttgart 21 and the Japan 

Pavilion for the Expo 2000. He now applies this 

practical knowledge to his research into the design 

and optimization of complex geometry buildings.

Olga Sorkine-Hornung is a computer scientist 

and Assistant Professor of Computer Science 

at ETH Zurich, where she leads the Interactive 

Geometry Lab at the Institute of Visual Computing. 

She earned her degrees at Tel Aviv University, and 

became Assistant Professor at the Courant Institute 

of Mathematical Sciences, New York University in 

2008. She has received many honour and awards such 

as the EUROGRAPHICS Young Researcher Award 

(2008) and the ACM SIGGRAPH Significant New 

Researcher Award (2011).

Tom Van Mele is a structural engineer and architect 

and a postdoctoral researcher at the BLOCK 

Research Group, ETH Zurich. He studied at the 

Vrije Universiteit Brussel, Belgium, where he earned 

his PhD in 2009 on scissor-hinged membrane struc-

tures. He won the Tsuboi Award (2010) from the 

IASS. His current research involves three-dimensional 

collapse behaviour of masonry vaults and graphic-

statics-based form-finding methods. He is also the 

project lead and lead developer of eQuilibrium, an 

online graphic statics platform.

Peter Winslow is a structural engineer at Expedition 

Engineering in London. His PhD, awarded in 2009 

by the University of Cambridge, involved developing 

new tools for the design of freeform structures with 

the Buro Happold SMART group. Awarded the 

IASS Tsuboi Prize in 2007, he has worked on several 

high-profile projects including the London 2012 

Olympic Velodrome, Stockton Infinity Footbridge 

and the Stavros Niarchos Foundation Cultural Centre.
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Plan or projected areas are denoted with an asterisk (*). Estimated numbers are denoted with a plus-minus sign 

(±). The thickness of gridshells is given as width times (×) height of the lattice elements. Demolished structures 

are denoted by a dagger symbol (†) behind their design and construction period. If ranges (–) are not given, then 

for spans the value is a maximum, and for thicknesses it is a minimum.

 

Project; Location Coordinates Year Architect; Engineer Area 
(m2)

Span 
(m)

Thickness 
(mm)

Page

Aichtal Outdoor Theatre, or 
Naturtheater Grötzingen; 
Grötzingen, Germany 
48°37’20.23”N 9°15’58.15”E 

1977 Michael Balz; Heinz Isler  600 42 90–120 31, 251, 
253, 255

Algeciras Market Hall; 
Algeciras, Spain 36°7’44.37”N 
5°26’44.05”W 

1932 Manuel Sánchez Arcas; 
Eduardo Torroja 

±1,775* 47.5 89–457 260

Alster-Schwimmhalle; Hamburg, 
Germany 53°33’36.44”N 
10°1’17.49”E 

1967 Niessen und Störmer; 
Schlaich, Bergermann 
und Partner 

 96 vii, x

Bacardi Rum Bottling 
Factory; Cuautitlan, Mexico 
19°37’41.08”N 99°11’28.57”W 

1959 Saenz-Cancio-Martin and 
Gutierrez; Félix Candela 

±4,056 36.8 40 246, 255, 
257, 260, 
268

British Museum, Queen 
Elizabeth II Great Court roof; 
London, UK 50°31’9.07”N 
0°7’45.99”W 

2000 Foster + Partners; Buro 
Happold 

6,700 13–39 92×73 238–44

Bronx Zoo Elephant House 
dome; New York, USA 
40°51’5.32”N 73°52’45.74”W 

1909 Heins & LaFarge; 
Guastavino Company 

   9

Bundesgartenschau 
Pavilion; Stuttgart, Germany 
48°47’55.63”N 9°12’18.29”E

1977† Hans Luz und Partner, 
Landschaftsarchitekten; 
Schlaich, Bergermann 
und Partner 

±3,000* 10–26 12–15 viii–ix

Centre Pompidou Metz; 
Metz, France 49°6’29.54”N 
6°10’53.80”E 

2006–10 Shigeru Ban; Blumer-
Lehmann AG, sjb.kempter.
fitze AG 

±8,000* 20–45, 
22 cantilever 

140×440 xii–xiii

Chapel Lomas de 
Cuernavaca; Morelos, Mexico 
18°52’33.83”N 99°12’9.89”W 

1958–59 Guillermo Rossell and 
Manuel Larossa; Félix 
Candela 

±360* 18–31 40 250–1, 
255, 257

Chiddingstone Orangery; Kent, 
UK 51°11’5.61”N 0°8’28.20”E 

2007 Peter Hulbert 
Arquitectos; Buro 
Happold 

±95* 5–12 30×45 91–2
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Project; Location Coordinates Year Architect; Engineer Area 
(m2)

Span 
(m)

Thickness 
(mm)

Page

Church of Our Lady of the 
Miraculous Medal (Milagrosa); 
Naruate, Mexico 19°22’46.14”N 
99°9’26.37”W 

1954–55 Félix Candela 1,530* 21–11 40 250–1, 
254–5, 
257

Church of San José Obrero 
(St Joseph the Laborer); 
Monterrey, Neuvo León, 
Mexico 25°43’48.54”N 
100°17’47.79”W 

1959 Enrique de la Mora 
and Fernando Lopez 
Carmona; Félix Candela 

±830* 30 40 viii–ix

Colònia Güell; Barcelona, 
Spain 41°21’49.90”N 
2°1’40.25”E 

1908–17 Antoni Gaudí ±866* ±7 28, 37–8, 
130, 132

Cosmic Rays Laboratory; 
Mexico City, Mexico 
19°20’2.19”N 99°10’52.47”W 

1951 Jorge Gonzales Reyna; 
Félix Candela 

±129 12 15–50 248, 257

Deitingen motorway BP service 
station; Deitingen, Switzerland 
47°13’33.34”N 7°36’59.38”W 

1968 Heinz Isler ±316* 31.6 90 253, 255

Deubau; Essen, Germany 
51°25’38.45”N 6°59’38.22”E 

1962† Frei Otto 225 15 40×60 41

Downland gridshell; 
Chichester, UK 50°54’24.10”N 
0°45’23.94”W 

2002 Edward Cullinan 
Architects; Buro Happold 

50×14.25 12.5–16 23.5×50 98–101

Duomo, Basilica di Santa Maria 
del Fiore (Basilica of Saint Mary 
of the Flower); Florence, Italy 
43°46’23.09”N 11°15’25.37”E 

1296–1436 Arnolfo di Cambio; 
Filippo Brunelleschi 

±2,500*  42 2,200–2,400 
(inner dome) 
450–900 
(outer 
dome) 

36

Gaoliang, or Jade Belt Bridge, 
Summer Palace; Beijing, China 
39°58’48.68”N 116°16’25.53”E 

1751–64  ...   11.38  28–9

Garden Centre Florélite; 
Plaisir, France 48°47’50.38”N 
1°56’59.20”E 

1966 Heinz Isler 1,400* 41 80 38

Gateway Arch; St Louis, USA 
38°37’28.27”N 90°11’4.96”W 

1947–65 Eero Saarinen, Saarinen 
and Associates; 
Hannskarl Bandel, 
Severud Associated 

N/A 192 (height) 16,000–
5,200 
(triangle 
side) 

114, 117

Gatti Wool Mill; Rome, Italy 
41°53’29.48”N 12°35’44.48”E 

1951–53 Aldo Arcangeli, Pier Luigi 
Nervi, Nervi & Bartoli 

±2,400 5 300 (ribs) 194, 196

Gießhauss; Kassel, Germany 
51°19’14.11”N 9°30’26.16”E 

1837 Carl-Anton Henschel ±200 16 320–175 36–7
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Project; Location Coordinates Year Architect; Engineer Area 
(m2)

Span 
(m)

Thickness 
(mm)

Page

Gringrin Island City Park; 
Fukuoka, Japan 33°39’49.86”N 
130°25’9.12”E 

2002–05 Toyo Ito; Mutsuro Sasaki 5,040 70 400 262–3

Haesley Nine Bridges Golf 
Clubhouse; Yeoju, South Korea 
33°21’2.96”N 126°23’14.48”E 

2006–09 Shigeru Ban, Kyeongsik 
Yoon; sjb.kempter.fitze 
AG, Blumer-Lehmann AG 

2,592*   xiii

Hagia Sophia; Istanbul, Turkey 
41°0’29.95”N 28°58’48.32”E 

532–37 Isidore of Miletus and 
Anthemius of Tralles 

±5,986* 33  18

Heimberg tennis court; 
Heimberg, Switzerland 
46°47’33.64”N 7°35’43.26”E 

1979 Heinz Isler ±900* 48.5 90–100 255–6

Hippo House, Berlin Zoo; 
Berlin, Germany 52°30’32.77”N 
13°20’11.61”E 

1996 J. Gribl; Schlaich, 
Bergermann und Partner 

±520* 29 60–40 92–3

Hyperthreads, AA Visiting 
School; Bangalore, India 
12°56’30.29”N 77°33’57.43”E 

2011 Zaha Hadid Architects, 
ZHA|CODE, Abhishek 
Bij, Design plus India; CS 
Yadunandan and Deepak 

48 6 80 102–6, 
110–13

Hyperthreads, AA Visiting 
School; Mexico City 
19°21’35.21”N 99°15’29.61”W 

2011 Shajay Bhooshan, 
Mostafa El Sayed 
(Zaha Hadid Architects, 
AADRL), Joshua Zabel 
(Kreysler and Associates), 
Alicia Nahmad and 
Knut Brunier (AADRL); 
Nathaniel M. Stanton and 
CRAFT 

62.5 4.95; 
2.75 
cantilever 

80 112

Japan Pavilion, 2000 
Expo; Hannover, Germany 
52°19’2.43”N 9°49’9.03”E 

2000 Shigeru Ban, Frei Otto; 
Buro Happold 

±3,090* 25.1 50–250 xii

Jerónimos monastery, Church 
of Santa Maria of Bélem 
Lisbon, Portugal 38°41’51.69”N 
9°12’20.25”W 

c. 1519–22 
(vault) 

Joã de Castilho, Diogo 
de Boitaca 

±1,138* 
(nave) 

±10 (nave) 70–100 156, 
166–7

Kakamigahara Crematorium; 
Gifu, Japan 35°25’14.25”N 
136°50’11.31”E 

2004–06 Toyo Ito; Mutsuro Sasaki 2,265 20 200 224–5, 
229, 
262–3

Kitagata Community Centre; 
Gifu, Japan 35°26’8.78”N 
136°40’57.62”E 

2001–05 Arata Isozaki; Mutsuro 
Sasaki 

4,495 25 150 262

Kresge Auditorium; 
Boston, USA 42°21’29.21”N 
71°5’42.14”W 

1955 Eero Saarinen; Anderson, 
Beckwith & Haible 
Ammann & Whitney 

±1,030* 48.77 75–455 51–2

www.AADZIGN.com

www.aadzign.com
www.aadzign.com


314   LIST OF PROJECTS

Project; Location Coordinates Year Architect; Engineer Area 
(m2)

Span 
(m)

Thickness 
(mm)

Page

Los Manantiales Restaurant; 
Xochimilco, Mexico 
19°14’54.81”N 99°5’34.56”W 

1957–58 Félix Candela; Joaquin 
and Fernando Alvarez 
Ordoñez 

±1,600* 42.4 40 251, 253, 
255

Mapungubwe National 
Park Interpretive Centre; 
South Africa 22°14’29.86”S 
29°24’17.30”E 

2006–09 Peter Rich Architects; 
John Ochsendorf and 
Michael Ramage, 

1,130* 5–14.5 
(10 vaults) 

300 6–7

Multihalle; Mannheim, 
Germany 49°30’16.73”N 
8°28’46.14”E 

1973–76 Atelier Frei Otto 
Warmbronn, Mutschler 
& Partners; Ove Arup & 
Partners, Bräuer Spaeh, 
Büro Linkwitz und Preuß 
with Lothar Gründig; Prof. 
Fritz Wenzel (checking 
engineer) 

 9,500 80 50×50 28, 40–2, 
58–9, 99, 
143–4, 
146, 
151–5, 
238–44

Munich Olympic Roofs; Munich, 
Germany 48°10’23.09”N 
11°32’47.79”E 

1972 Behnisch und Partner, 
freie Architeckten, 
Munich/Stuttgart, Prof. 
Günther Behnisch, 
Fritz Auer, Winfried 
Büxel, Erhard Tränkner, 
Karlheinz Weber 
(design, concept and 
planning); Prof. Frei 
Otto, Warmbronn 
(development); Prof. 
Dr-Ing. Fritz Leonhardt, 
Dipl.-Ing. Wolfhard 
Andrä, Dipl.-Ing. Dr Jörg 
Schlaich (engineering); 
Prof. Dr-Ing. Klaus 
Linkwitz, Institut für 
Anwendungen der 
Geodäsie, University 
of Stuttgart, Prof. 
John H. Argyris, 
Institut für Statik und 
Dynamik der Luft- und 
Raumfahrtkonstruktionen, 
University of Stuttgart 
(cutting patterns) 

74,800 450 750 × 750 
mesh, 2· (Ø 
11.7/16.5) 

ix–x, 
143, 147, 
155

Murinsel; Graz, Austria 
47°4’23.46”N 15°26’4.47”E 

2003 Vito Acconci; Zenckner & 
Handl; Kurt Kratzer 

 958  20–50  92–3

Museum of Hamburg 
History; Hamburg, Germany 
53°33’3.98”N 9°58’23.10”E 

 1989 Gerkan, Marg und 
Partner; Schlaich, 
Bergermann und Partner 

±1,000* 17 Ø60–40 x–xi

New Milan Trade Fair; Milan, 
Italy 45°31’12.36”N 9°4’44.06”E 

 2002–05 Massimiliano and Doriana 
Fuksas architects; 
Schlaich Bergermann and 
Partners, Mero 

 50,600 60–160×60–
350; 
10–20 
(thickness) 

180–1
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Project; Location Coordinates Year Architect; Engineer Area 
(m2)

Span 
(m)

Thickness 
(mm)

Page

Palazzetto dello Sport; 
Rome, Italy 41°55’46.61”N 
12°28’14.54”E 

1956–58 Annibale Vitellozzi; Pier 
Luigi Nervi 

±2,820* 60 25 viii–ix, 
210–12

Pines Calyx, The; St Margaret’s 
Bay, UK 51°8’56.36”N 
1°22’54.69”E 

2007 Phil Cooper; John 
Ochsendorf, Michael 
Ramage, Wanda Lau 

±220 12 ±70 9

Portcullis courtyard; London, 
UK 51°30’4.79”N 0°7’29.75”W 

2001 Hopkins Architects; Ove 
Arup & Partners 

1,250* 25 100×200 241

Rolex Learning Centre; 
Lausanne, Switzerland 
46°31’5.86”N 6°34’6.11”E

2005–09 SANAA; Mutsuro Sasaki 39,000 80 400–800 262, 264

Rio’s Warehouse; Lindavista, 
Mexico 19°29’7.17”N 
99°9’57.51”W 

1954 Félix Candela 150 15.25 40 251–2

Savill Building; Windsor 
Great Park, UK 51°25’35.45”N 
0°35’50.22”W 

2006 Glenn Howells Architects; 
Buro Happold 

±2,250* ±25 2· (80×50) 88, 90, 
99

Scheepvaartmuseum, or Dutch 
National Maritime Museum; 
Amsterdam, Netherlands 
52°22’17.82”N 4°54’53.25”E 

2011 Ney & Partners ±1,156  34 40/60×100–
180 

cover, 
14, 16, 
18–19

Shukhov tower, or Shabolovka 
tower; Moscow, Russia 
55°43’2.50”N 37°36’41.64”E 

1922 Vladimir Shukhov ±1,250* 40, 
60 (height) 

100×10 92

Sicli factory; Geneva, 
Switzerland 46°11’20.43”N 
6°7’47.01”E 

1969 C. Hiberer; Heinz Isler ±1,500 58 100 44, 48, 
255

Solemar Therme; Bad 
Dürrheim, Germany 
48°0’54.83”N 8°32’5.88”E 

1987 Geier + Geier; 
Wenzel, Frese, Pörtner, 
Haller, Büro für 
Baukonstruktionen with 
Dipl.-Ing. R. Barthel 
(structural design); 
Linkwitz, Preuß, Büro für 
geodätische Meß- und 
Rechentechnik, with 
Dr-Ing. L. Gründig and 
Dipl.-Ing. J. Bahndorf 

 2,500 17 200×250 59, 
142–4, 
146–51, 
154–5

St Paul’s Cathedral; London, 
UK 51°30’49.08”N 0° 
5’54.05”W 

1708 Robert Hooke, 
Christopher Wren 

±900* 34 450 9, 32, 
35–6
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Project; Location Coordinates Year Architect; Engineer Area 
(m2)

Span 
(m)

Thickness 
(mm)

Page

St Peter’s Cathedral; 
Vatican City 41°54’7.55”N 
12°27’11.65”E 

1506–1626 Donato Bramante, 
Michelangelo, Carlo 
Maderno and Gian 
Lorenzo Bernini 

±1,350* 41.9 300 36–7, 42

Sydney Opera House; Sydney, 
Australia 33°51’24.65”S 
151°12’54.66”E 

1973 Jørn Utzon; Ove Arup & 
Partners 

16,000 50 11–12, 
39–40, 
42, 243

Temple of Mercury; Baiae, Italy 
40°49’4.20”N 14°4’11.66”E 

1st c. BC  ±360* 21.5 600–1,600 20, 22, 
87

Teshima Art Museum; 
Kagawa, Japan 34°29’22.49”N 
134°5’28.56”E 

2008–10 Ryue Nishizawa; Mutsuro 
Sasaki 

2,040 43–60 250 258, 
262–70

Thin tile vault at ETH 
Zurich; Zurich, Switzerland 
47°24’31.22”N 8°30’21.59”E 

2011† BLOCK Research Group: 
Matthias Rippmann, 
Lara Davis, Philippe 
Block; Lara Davis, Tom 
Pawlofsky 

28.6 90–140 70–2

TWA Flight Center; New 
York, USA 40°38’44.91”N 
73°46’39.48”W 

1962 Eero Saarinen and 
Associates; Ammann & 
Whitney 

177–1,016 260–1

Wolfgang Meyer Sport Centre 
Hamburg-Stellingen; Hamburg, 
Germany 53°35’25.07”N 
9°56’36.99”E 

1994 Silcher, Werner und 
Partner; Schlaich, 
Bergermann und Partner 

6,700 20 membrane xi
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3D-print, 85

acceleration, 94, 107, 124, 276

active constraint, 177

Airy stress function, 24, 289

allele, 291

analytical shape, see mathematical shape

angle-preserving parameterization, 185

anisotropy, 45, 49, 184

anticlastic curvature, viii, 25, 60, 67, 104, 110, 286

Arcangeli, Aldo, 196

Arnoldi algorithm, 197, 205

Arup, Ove, 260

Auer, Fritz, x

backward Euler method, 107, 113, 126

Balz, Michael, 31

bending moment, 23, 125, 196, 288

bending stiffness, 26, 93, 242

Bergermann, Rudolf, x 

BFGS, 187

BiCGSTAB, 109

biconjugate gradient stabilized method, see 

BiCGSTAB

biharmonic equation, 24

binary, 173, 212, 229, 293

Blanchard, John, 243

Blumer, Hermann, xiii

branch-node matrix, 63, 68, 78, 117, 205 

Brunelleschi, Filippo, 36

buckling, 22, 25, 31, 35, 91, 175, 242, 243, 279

load, 26, 41, 50, 93, 191, 242, 266–9 

CAGD, see computer-aided geometric design

Candela, Félix, viii, 104, 247, 261–2 

Catalan vault, 9

catenary, 2, 8, 28, 30, 35–6, 117, 122, 132, 135

Catmull-Clark subdivision, see subdivision surface

central difference form, 107 

centroidal dual, 160, 167, 204

CG, see conjugate gradient method

Cholesky decomposition, 109, 164, 167

Christoffel symbol, 284

chromosome, 172, 229, 291, 295–6

circular arch, 29

classic Runge-Kutta method, see RK4

closed form expression, 162, 167

clustering, 189, 192, 293

Cohen-Vossen theorem, 25

colander, 22

collapse, 41, 52, 85, 91, 242 

compatibility equation, 24, 62, 275, 279 

compliance design, 212

computational morphogenesis, 3, 226, 231, 235 

computer-aided geometric design, 50–2

cone, 8

conformal parameterization, 185, 192

conjugate gradient method, 109

on the normal equations, 146

with Jacobi preconditioning, 187

constant length, 122, 152 

constant stress arch, 29

constitutive equation, 24, 62, 213, 275

constraint, 3, 50, 144, 148, 173, 175, 178, 213, 294

construction tolerance, 266

contact face, 84

continuous variable, 213, 293

contravariant base vector, 283

convergence, 95, 97, 116, 122, 127

convex, parallel dual, 158, 167 

cooling tower, see hyperboloid of one sheet

coordinate difference, 64, 117

covariant base vector, 282

creep, 242
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cross-bracing, 90

crossover, 172, 189, 292

curvature, 23

anticlastic, see anticlastic curvature

Gaussian, see Gaussian curvature

Germain, see Germain curvature

mean, see mean curvature

synclastic, see synclastic curvature

cutting pattern, 48, 111, 143

damping, 107, 108, 125, 127

kinetic, 95, 97

viscous, 95, 97, 124

Day, Alistair, 93

deformation energy, 213

Delaunay triangulation, 175, 178

design loading, 2, 48, 117 

design noise, 46, 51

design patch, 51, 54 

design space, 3, 46, 173–4, 212

design variable, 3, 226

developable surface, 25, 186

diagonal bracing, 91, 135

diagonal matrix, 63, 125, 205 

diagram

force, see force diagram

form, see form diagram

reciprocal, see reciprocal diagram

Voronoi, see Voronoi diagram

diatom, 222

difference form, 94

central, 107

forward, 107

differential geometry, 281

dimensional analysis, 41, 93

direct approach, see force density method

directed graph, 79

direction cosine, 62, 64, 118

discrete Laplacian, 201, 205, 208

discrete topology optimization, 178

discrete variable, 212, 293

displacement, 275

domain integral based function, 213

dome, 8–9, 11, 17, 22, 25, 35–7, 221

dominance, 293

DR, see dynamic relaxation

drag, 108, 126

dual

centroidal, see centroidal dual

convex, parallel, see convex, parallel dual

graph, 75, 167

dynamic equilibrium methods, 115, 128

dynamic relaxation, 89, 101, 107, 123, 278

eigenfunction, 197, 201, 208 

eigenshell, 196

eigenvalue, 197, 242, 285

eigenvalue buckling load, see buckling load

eigenvector, 205, 208, 285

Einstein summation convention, 283

elastic stiffness, 284

elastic stiffness matrix, 213, 278

elitism, 292

elliptic paraboloid, 261

equilibrium equation, 23–4, 30, 62, 116, 128, 275, 

279, 289

error, 42, 86, 145, 268–9

Esquillan, Nicolas, 250

Euler method, 107, 109, 113 

backward, see backward Euler method

semi-explicit, 107

evaluation, 189, 231

evolutionary algorithm, 4, 172

explicit integration, 26, 107, 113, 125, 278

fabric guidework, 104, 111

falsework, 85–6, 91, 111, 251, 256–8, see also 

scaffolding

FDM, see force density method

FE, see finite element

filter, 46–7, 52

radius, 52, 216

finite element, 53, 185, 187, 215

analysis, 50–3, 189, 206, 209, 254, 257

isoparametric, 53, 276 

method, 26, 274

first fundamental form, 283

fitness 

function, 172, 231, 235, 293

landscape, 235

flexibility, see mean compliance

flow of forces, 73, 83–4, 138–9, 166, 220

flux structure, 262

force density, 62, 65, 68, 80, 106–7, 110, 127, 158
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method, 59, 118–23, 128

nonlinear, 128, 143, 162

force

diagram, 72–3, 86, 158, 160, 164

pattern, 166

polygon, 120

form

diagram, 72–3, 86, 158–9

finding, 2, 48, 115, 131

form-active, 1, 22

form-found shape, 2, 34

form-passive, 1, 22

forward difference form, 107

forward substitution, 164

free material optimization, 185

free-curved shape, see freeform shape

freeform shape, 2, 86, 92, 181, 259, 271–2

funicular, 8, 15, 26–8, 34–8, 71–2, 86, 157

polygon, 27, 72, 120

GA, see genetic algorithm

Gabriel, Knut, x

Galerkin’s method, 276

Galilei, Galileo, 35

Gaudí, Antoni, vii, 53–4, 132

Gauss’s Theorema Egregium, 25, 286

Gauss–Jordan elimination, 119

Gauss–Newton’s method, 145

Gaussian curvature, 25, 110, 285, 287

Gaussian elimination, see Gauss-Jordan elimination

general theory of relativity, 283

genetic algorithm, 171–2, 178, 225, 227, 290

multi-objective, see MOGA

non-dominated sorting genetic algorithm II,  

189

geometric stiffness, 94

matrix, 279

methods, 115–16

geometrical anisotropy, 45

geometrical shape, see mathematical shape, 63

Germain curvature, see mean curvature

Giambattista della Porta, 36

global optimum, 4

glulam, 150

Godzilla, 166

gradient, 64, 68, 108, 162

descent, 162, 167, 263 

graph, 167 

dual, 75, 167, 204 

planar, 158, 167

graph theory, 63

graphic statics, 72, 86 

Green’s theorem, 280

grid

layout, 90, 182 

quadrangulated, x, 93, 151, 197

triangulated, 135, 184, 243–5

gridshell, 2, 89, 101, 171, 181, 239, 259

construction, 90, 99–100, 150, 153, 241

multi-layer, see multi-layer gridshell

strained, see strained gridshell

unstrained, see unstrained gridshell

Gründig, Lothar, 143 

Guastavino method of construction, 9

Gösling, Friedrich, 37

hanging 

chain, 7–8, 12, 34, 117

model, 35–41, 48–50, 72, 152, 240, 253–6, 261

Happold, Ted, 240

Heyman, Jacques, 73

homogenization method, 185, 211, 223

Hooke’s law of 

elasticity, 7, 61–2, 66, 106

inversion, 8, 34, 48

Hooke, Robert, 7, 9, 35

hypar, see hyperbolic paraboloid

hyperbolic paraboloid, ix–x, 250–7, 260, 270–1

hyperboloid of one sheet, 25, 282

Hübsch, Heinrich, 36

imperfection, 26, 54, 91, 266

sensitivity, 63, 243

implicit integration, 26, 107–9, 113, 126

incidence matrix, see branch-node matrix

indeterminacy, see static indeterminacy

inextensional deformation, 25, 45, 241

initial length, 60, 66, 94, 106, 116, 123–5, 128, 

see also rest length

instability, 45, 72 

integration, 109, 116, see also Euler method,  

midpoint method, Runge-Kutta methods,  

Verlet method

explicit, see explicit integration
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implicit, see implicit integration

inversion, see Hooke’s law of inversion

Isler, Heinz, x, 16, 31, 37–9, 48–9, 249–59

isogeometric analysis, 53

isoline, 204

isoparametric, see finite element

isosurface, 217

isotropy, 184, 213, 284 

Ito, Toyo, 229, 262

Jacobian, 64, 68, 108–9

Jenkins, Ronald, 243

Kelvin, Lord William Thomson, 25

kern, 74

kinematic equation, see compatibility equation

kinematic stability, 173, 178

kinetic damping, 95–6

kinetic energy peak, 95–6

Lagrange multiplier, 144, 154, 161 

Lagrangian, see Lagrange multiplier

Laplace-Beltrami operator, 205, 208

Laplacian, 208

discrete, 201, 205, 208

graph, 205 

matrix, 201, 205

lattice shell, see gridshell

leapfrog method, 93–4, 109, 124, 128

least squares, 144–5, 154, 161

moving, see MLS

length 61, 64, 118

length-preserving parameterization, 185, 192

Leonhardt, Fritz, x

line search, 162, 167

linear buckling load, see buckling load

linear system, 60, 63, 108, 117–18, 145, see also 

BiCGSTAB, Cholesky decomposition, conjugate 

gradient method, Gauss–Jordan elimination

linearization, 62, 108, 148

local optimum, 3, 52

Loop subdivision, 296, see also subdivision surface

lower-bound theorem, 73

macroscopic stiffness, 231

Marg, Volkwin, x

masonry, 9, 71–4, 165

mass, 94, 107, 124–6

mass matrix, 276 

mathematical shape, 3, 33

mean compliance, 212–13

mean curvature, 285 

membrane, 

action, 25, 31, 45, 260, 288

stiffness, 242 

stress, 1, 23–4, 90, 253, 288

method of Lagrange multipliers, see Lagrange 

multiplier

method of least squares, see least squares

Michelangelo, 36

micro-cell, 213–14

middle third rule, 74, 86

midpoint method, 107, 109

minimal squared length net, 110

minimal surface, 110, 285

mixed variables, 293

MLS, 174, 179

MOGA, 189, 293 

Mohrmann, Karl, 37

Monge form, 287

Moore-Penrose pseudoinverse, 145

moving least squares, see MLSmulti-layer gridshell, 

90–1, 98–9, 151

multi-objective genetic algorithm, see MOGA

multi-objective optimization, 3, 50, 183, 193 

mutation, 175, 177, 189–90, 292

Mutschler, Carlfried, 40

Nervi, Pier Luigi, viii, 195, 212, 259 

Newton’s second law, 94, 106–7, 275

Newton–Rhapson’s method, 108, 113, 116, 145,  

148

noise, 197 201

design, see design noise

non-dominance, 293

non-dominated set, see Pareto front

non-uniform rational basis spline, see NURBS

nonlinear programming, 50

normal equations, 144–5, 154

normal matrix, 145

normal stress, 23

NP, see nonlinear programming

NURBS, 2, 51, 53, 81, 104, 111, 181, 185, 192, 197, 

202, 230, 263, 274, 276, 295
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objective, 3, 45–6, 50, 181, 183, 189–90, 212–13

function, 3, 167, 171–3, 178, 201, 227

oculus, 8–9, 11, 23, 25

optimality condition, 144

optimization, 3–4, 45, 48, 50

problem, 3, 80, 144–5, 154, 160–1, 173

ordinary differential equation, 113

orthotropy, 48, 184, 213

Otto, Frei, ix–x, xii, 38–41, 49, 151, 242

overdetermined system, 144

parabola, 8, 28, 119, 122–3

parabolic arch, 23

parallel dual graph, 75, 158, 167

parameterization, 50, 197

angle-preserving, 185, 192

CAGD-based, 50 

conformal, 186, 192

FE-based, 52

length-preserving, 186, 192

surface, 185, 192

parametric definition, 226, 230, 235

Pareto 

front, 3, 16, 183, 293

optimal, 182–3, 189, 191–2, 293 

optimal set, see Pareto front

particle-spring method, 104, 113, 116, 125, 131, 135

pattern optimization, 195–7

pattern scaling, 197, 200, 204

PCGM, see conjugate gradient method with Jacobi 

preconditioning

penalty power, 215

performance objective, see objective

periodic global reparameterization algorithm, 186, 

197, 203, 207

Peterson-Mainardi-Codazzi equations, 278, 286

physical 

form finding, 33, see also hanging model

model, 33, 85, 93, 240, 243, 261

pixel, 212–13, 223

planar graph, 158, 167

plane stress, 23 

plate bending, 23

pneumatic form, 251

Poleni, Giovanni, 36–7

Poppensieker, Wilhelm, 240

population, 172, 189, 290

porosity, 215

principal curvature, 25, 30, 186, 202, 208, 285

principal stress, 186, 197, 202, 206, 208, 281, 285

proper cell decomposition of the plane, 158

PS, see particle-spring method

quadrangulation, see grid

quadratic program, 144, 154

quasi-Newton Broyden-Fletcher-Goldfarb-Shanno 

method, see BFGS

rainflow analogy, 83, 138

Rayleigh, Lord John William Strutt, 25

RC, see reinforced concrete

reciprocal diagram, 11, 72–6, 79, 86, 120, 158, 164, 

167 

regularization, 47

reinforced concrete, 259

reinforcement, 112, 255, 265

reparameterization, 52, 186, 203, 207

reproduction, 293–4

residual, 145

residual force, 94, 106–7, 122, 124, 144, 154

rest length, 106, 110, 116, 125–7, 132, 134–5, 

see also initial length

reticulated shell, see gridshell

Riemann-Christoffel tensor, 287

RK4, 109, 117, 126, 128

rod spacing, 186

Runge-Kutta methods, 127, 203, see also RK4

SA, see sensitivity analysis, see simulated  

annealing

Saarinen, Eero, 51, 117, 261–2

safe theorem, 73 , 165

safety factor, 264

Sasaki, Mutsuro, 226, 229, 259

scaffolding, 52, 99, 241, 256–8, see also falsework

scalar potential function, 186

Schlaich, Jörg, iix

scripting, 235

sculptural shape, see freeform shape

search space, 173–4, 226, 230

Segelschalen, 53

seismic force, 265

selection, 293–4

semi-explicit Euler method, 107
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sensitivity analysis, 230, 235, 261

shape dependent loading, 122

shape function, 50, 53, 276

shape modifier, 197

shape optimization, 4, 48, 50, 200

shear, 

force, viii, 96

resistance, 48

stiffness, 90–1

stress, 23, 202, 213

strain, 279

shell, 1, 21

action, 23, 26, 92

construction, 99

decline of, 259

sieve, 22, 93

simulated annealing, 197

singularity, 204

sizing optimization, 4

smoothing, 47, 297

spectral method, 208

spherical dome, 8, 25, 221, see also dome

spline, 89, 97–9, 101

element, 96, 125

spring damping, 125

spring stiffness, 106, 110, 127, 132

square-cube law, 35

stability analysis, 266–7

static indeterminacy, 11, 24, 75–7, 133

steel, x, 92, 171, 175, 242

Stevin, Simon, 35

stiffness

bending, 22, 25–6, 46, 93–4, 127, 244–5

membrane, 23–4, 244–5

matrix, 125, 173, 213–5, 280–1

matrix methods, 115

stone cutting, 84

strain, 24, 62, 123, 213, 215, 227, 275, 279, 286

energy, 50, 227, 231, 261, 279

strained gridshell, 89–90, 97–8, 101, 125

stress, 23–4, 275

membrane, see membrane stress

normal, see normal stress

plane, see plane stress

shear, see shear stress

strong Wolfe conditions, 162, 167

Structural Expressionism, 259

structural

feedback, 136

optimization, 3–4, 50, 293

pattern, 195, 202

Stuttgart direct approach, see force density method

subdivision surface, 52, 104, 113, 295

support condition, 133, 211, 218

surface

coordinate system, 185

developable, 25, 186

of revolution, 25, 30, 92

parameterization, 185, 192, 281

synclastic curvature, 25, 110, 285

system of linear equations, see linear system

Tange, Kenzo, 259

Taylor series, 108, 148

tension coeffcient, see force density

tensor, 284

tessellation, 83 

Theorema Egregium, see Gauss’s Theorema Egregium

thrust line, 72–4

thrust network, 74–6, 86, 158

thrust network analysis, 11, 71, 116, 120, 157

timber, 2, 98, 243–5

TNA, see thrust network analysis

topology, 2, 4, 63, 78, 135, 173

topology optimization, 4, 211, see also discrete 

topology optimization

Torroja, Eduardo, 250, 260

trade-off set, see Pareto front

translational surface, 92

triangulation, 26, see also Delaunay triangulation

tributary load, 80, 174–5

Tsuboi, Yoshikatsu, 259

umbrella form, 251

underdetermined system, 144, 146

uniform stress shell, 30

unit cell, 184, 192

unstrained gridshell, 90–1, 101, 

Utzon, Jørn, 39

valency, 76

velocity, 94–5, 106–7, 124, 126, 279

relative, 125

virtual, 288
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Verlet method, 26, 101, 125, 278

Vierendeel action, 242

virtual work, 275, 279, 288 

viscous damping, 95, 124

volume fraction, 215, 217, 223

Voronoi diagram, 80, 174, 179

voussoir, 36, 72–3, 83–6

voxel, see pixel

weighting, 3, 145, 149

Wren, Christopher, 9, 35

zero-length spring, 110, 126
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